27 research outputs found

    Paralysis and lipofuscin-like pigmentation of farm stock caused by the plant, Trachyandra laxa var. laxa

    Get PDF
    A paralytic condition of farm stock in South West Africa, characterized by prominent neuronal and some mild extraneuronal pigmentation, is described. The distribution of the pigment, which was mainly located in the larger neurones of the brain and spinal cord, is given. Experimental evidence, obtained by feeding the plant, is presented that the condition is caused by Trachyandra laxa var. laxa. The histochemical features of the pigment proved to be compatible with a lipofuscin.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format

    Reconstituted B cell receptor signaling reveals carbohydrate-dependent mode of activation

    Get PDF
    Activation of immune cells (but not B cells) with lectins is widely known. We used the structurally defined interaction between influenza hemagglutinin (HA) and its cell surface receptor sialic acid (SA) to identify a B cell receptor (BCR) activation modality that proceeded through non-cognate interactions with antigen. Using a new approach to reconstitute antigen-receptor interactions in a human reporter B cell line, we found that sequence-defined BCRs from the human germline repertoire could be triggered by both complementarity to influenza HA and a separate mode of signaling that relied on multivalent ligation of BCR sialyl-oligosaccharide. The latter suggested a new mechanism for priming naïve B cell responses and manifested as the induction of SA-dependent pan-activation by peripheral blood B cells. BCR crosslinking in the absence of complementarity is a superantigen effect induced by some microbial products to subvert production of antigen-specific immune responses. B cell superantigen activity through affinity for BCR carbohydrate is discussed

    Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation

    Get PDF
    In savannas, the tree–grass balance is governed by water, nutrients, fire and herbivory, and their interactions. We studied the hypothesis that herbivores indirectly affect vegetation structure by changing the availability of soil nutrients, which, in turn, alters the competition between trees and grasses. Nine abandoned livestock holding-pen areas (kraals), enriched by dung and urine, were contrasted with nearby control sites in a semi-arid savanna. About 40 years after abandonment, kraal sites still showed high soil concentrations of inorganic N, extractable P, K, Ca and Mg compared to controls. Kraals also had a high plant production potential and offered high quality forage. The intense grazing and high herbivore dung and urine deposition rates in kraals fit the accelerated nutrient cycling model described for fertile systems elsewhere. Data of a concurrent experiment also showed that bush-cleared patches resulted in an increase in impala dung deposition, probably because impala preferred open sites to avoid predation. Kraal sites had very low tree densities compared to control sites, thus the high impala dung deposition rates here may be in part driven by the open structure of kraal sites, which may explain the persistence of nutrients in kraals. Experiments indicated that tree seedlings were increasingly constrained when competing with grasses under fertile conditions, which might explain the low tree recruitment observed in kraals. In conclusion, large herbivores may indirectly keep existing nutrient hotspots such as abandoned kraals structurally open by maintaining a high local soil fertility, which, in turn, constrains woody recruitment in a negative feedback loop. The maintenance of nutrient hotspots such as abandoned kraals by herbivores contributes to the structural heterogeneity of nutrient-poor savanna vegetation

    Ecological Thresholds in the Savanna Landscape: Developing a Protocol for Monitoring the Change in Composition and Utilisation of Large Trees

    Get PDF
    BACKGROUND: Acquiring greater understanding of the factors causing changes in vegetation structure -- particularly with the potential to cause regime shifts -- is important in adaptively managed conservation areas. Large trees (> or =5 m in height) play an important ecosystem function, and are associated with a stable ecological state in the African savanna. There is concern that large tree densities are declining in a number of protected areas, including the Kruger National Park, South Africa. In this paper the results of a field study designed to monitor change in a savanna system are presented and discussed. METHODOLOGY/PRINCIPAL FINDINGS: Developing the first phase of a monitoring protocol to measure the change in tree species composition, density and size distribution, whilst also identifying factors driving change. A central issue is the discrete spatial distribution of large trees in the landscape, making point sampling approaches relatively ineffective. Accordingly, fourteen 10 m wide transects were aligned perpendicular to large rivers (3.0-6.6 km in length) and eight transects were located at fixed-point photographic locations (1.0-1.6 km in length). Using accumulation curves, we established that the majority of tree species were sampled within 3 km. Furthermore, the key ecological drivers (e.g. fire, herbivory, drought and disease) which influence large tree use and impact were also recorded within 3 km. CONCLUSIONS/SIGNIFICANCE: The technique presented provides an effective method for monitoring changes in large tree abundance, size distribution and use by the main ecological drivers across the savanna landscape. However, the monitoring of rare tree species would require individual marking approaches due to their low densities and specific habitat requirements. Repeat sampling intervals would vary depending on the factor of concern and proposed management mitigation. Once a monitoring protocol has been identified and evaluated, the next stage is to integrate that protocol into a decision-making system, which highlights potential leading indicators of change. Frequent monitoring would be required to establish the rate and direction of change. This approach may be useful in generating monitoring protocols for other dynamic systems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    When less is more: heterogeneity in grass patch height supports herbivores in counter-intuitive ways

    No full text
    Herbivores are an integral part of the African landscape and have evolved with the vegetation to create the savanna landscape. Managers of these landscapes can benefit from a better understanding of how indigenous herbivores use the landscape to which they are adapted. In this study we observed which patches were frequently utilised, by doing regular monthly road counts, grass height observations and dung counts on selected short grass patches in the Kruger National Park. Smaller-framed impala and blue wildebeest (meso-herbivores) were most regularly seen on these nutritious patches, while from dung deposits it was clear that the even larger-framed buffalo (mega-herbivores) spent time there. This preference can be explained by considering the nutritional needs and food intake of the herbivores. Smaller-framed herbivores seem to be able to satisfy their dietary requirements on the high-quality forage patches, while larger-framed herbivores seem to supplement the quality forage by also spending foraging time on areas of higher grass biomass. From this insight we propose that range management should take herbivore preferences into account and allow herbivores to select and concentrate their foraging on the most nutritious forage. This approach is likely to decrease inputs while allowing animals to maintain or increase production.Keywords: diet selection, grazing management, forage quality, nutritio

    The utilisation of large savanna trees by elephant in southern Kruger National Park.

    No full text
    Abstract: Elephant are believed to be one of the main ecological drivers in the conversion of savanna woodlands to grassland. We assessed the impacts of elephant on large trees (≥5 m in height) in the southern section of the Kruger National Park. Tree dimensions and utilization by elephant were recorded for 3082 individual trees across 22 transects (average length of 3 km and 10 m wide). Sixty per cent of the trees exhibited elephant utilization and 4% were dead as a direct result of elephant foraging behaviour. Each height class of tree was utilized in proportion to abundance. However, the size of the tree and the species influenced the intensity of utilization and foraging approach. Sclerocarya birrea was actively selected for and experienced the highest proportional utilization (75% of all trees). Interestingly, the proportion of large trees that were utilized and pushed over increased with distance from permanent water, a result which has implications for the provision of water in the KNP. We conclude that mortality is likely to be driven by a combination of factors including fire, drought and disease, rather than the actions of elephant alone. Further investigation is also required regarding the role of senescence and episodic mortality

    Why elephant have trunks and giraffe long tongues: how plants shape large herbivore mouth morphology

    No full text
    Abstract Pretorius, Y., de Boer, W.F., Kortekaas, K., van Wijngaarden, M., Grant, R.C., Kohi, E.M., Mwakiwa, E., Slotow, R., Prins, H.H.T. 2015. Why elephant have trunks and giraffe long tongues: how plants shape large herbivore mouth morphology. -Acta Zoologica (Stockholm) 00: 000-000. We investigated whether mass and morphological spatial patterns in plants possibly induced the development of enlarged soft mouth parts in especially megaherbivores. We used power functions and geometric principles to explore allometric relationships of both morphological and foraging characteristics of mammalian herbivores in the South African savannah, covering a body size range of more than three orders magnitude. Our results show that, although intradental mouth volume scaled to a power slightly less than one to body mass, actual bite volume, as measured in the field, scaled to body mass with a factor closer to 1.75. However, when including the volume added to intradental mouth volume by soft mouth parts, such as tongue and lips (or trunks in elephant), mouth volume scaled linearly with actual bite volume and in a similar fashion as actual bite volume to body size. Bite mass and bite leaf mass scaled linearly with body size. We conclude that these scaling relationships indicate that large herbivores use their enlarged soft mouth parts to not only increase bite volume and thereby bite mass, but also select soft plant parts and thereby increase the leaf mass fraction per bite
    corecore