529 research outputs found

    A simplified levelling instrument: the A-frame

    Get PDF
    A levelling instrument has been developed which permits work in a high degree of detail without field assistance

    Investigations relating to factors influencing the effectiveness of an aero-engine intake thermal anti-icing system

    Get PDF
    Thermal anti-icing systems are commonly used to protect aircraft leading edges from a potentially hazardous build-up of ice. Such systems have proven reliable in service and are relatively cheap and efficient. Typically, hot air is tapped from the engine compressor and ducted (via a regulation and control system) to the surface to be protected. Ideally an optimisation process should be employed at the design stage in order to ensure adequate anti-icing capability with minimal use of engine bleed air, since the latter represents a performance penalty. Following submission by the author of an MSc thesis concerning thermal modelling of a hot air anti-icing system for a civil turbofan intake (Wade 67 ), it became clear that extension of the studies was necessary to enable systematic accounting of the factors which limit ice accretion. An experimental programme was therefore carried out to investigate primarily: various exhaust geometries (through which spent anti-icing air is emitted to join the main engine inlet airflow and provide heating of the downstream surface; various cowl internal configurations on a full-scale model section of a large civil turbofan Nose Cowl. The internal geometry affects the effectiveness of the cowl lipskin heating, and the spent anti-icing exhaust air limits the quantity of unevaporated water which runs back along the intake acoustic surface downstream of the directly heated area and freezes. The Computational Fluid Dynamics package PACE (Prediction of Aerodynamics and Combustor Emissions) was used to model the internal, freestream and exhaust airf lows to determine the program's potential and usefulness for predictive purposes in this type of application. PACE is capable of modelling two or three dimensional, recirculating or non-recirculating flows for simple rectangular or polar geometry. It encompasses a suite of sub-programs to generate meshes and to create and solve the set of coupled linear equations representing the fluid flow. Various parameters, including heat transfer coefficients, were predicted in two regions: downstream of the exhaust plane to model the mixing of the spent anti-icing air and the freestream main engine inlet flow; inside and outside the Nose Cowl highlight area to predict skin temperature distributions for the three internal geometry configurations tested. This thesis describes the experimental work and compares the results with the Computational Fluid Dynamics predictions. Agreement was generally found to be good, and it was concluded that PACE may provide a useful modelling (design) tool, albeit with some reservations

    Comorbidities, exposure to medications, and the risk of community-acquired clostridium difficile infection: A systematic review and meta-analysis

    Get PDF
    Background. Clostridium difficile infection (CDI) has been extensively escribedin healthcare settings; however, risk factor sassociated with community-acquired (CA) CDI remain uncertain. This study aimed to synthesize the current evidence for an association between commonly prescribed medications and comorbidities with CA-CDI. methods. A systematic search was conducted in 5 electronic databases for epidemiologicstudi esthatexamined the associtation between the presence of comorbidities and exposure to medications with the risk of CA-CDI. Pooled odds ratios were estimated using 3 meta-analytic methods. Subgroup analyses by location of studies and by life stages were conducted. results. Twelve publications (n=56,776 patients) met inclusion criteria. Antimicrobial (odds ratio, 6.18; 95% CI, 3.80-10.04) and corticosteroid (1.81; 1.15-2.84) exposure were associated with increased risk of CA-CDI. Among the comorbidities, inflammatory bowel disease (odds ratio, 3.72; 95% CI, 1.52-9.12), renal failure (2.64; 1.23-5.68), hematologic cancer (1.75; 1.02-5.68), and diabetes mellitus (1.15; 1.05-1.27) were associated with CA-CDI. By location, antimicrobial exposure was associated with a higher risk of CA-CDI in the United States, whereas proton-pump inhibitor exposure was associated with a higher risk in Europe. By life stages, the risk of CA-CDI associated with antimicrobial exposure greatly increased in adults older than 65 years. conclusions. Antimicrobial exposure was the strongest risk factor associated with CA-CDI. Further studies are required to investigate the risk of CA-CDI associated with medications commonly prescribed in the community. Patients with diarrhea who have inflammatory bowel disease, renal failure, hematologic cancer, or diabetes are appropriate populations for interventional studies of screening

    Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images

    Full text link
    The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods to determine the average direction and velocity of coronal mass ejections (CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such as the HIs onboard the STEREO spacecraft. Both methods assume a constant velocity in their descriptions of the time-elongation profiles of CMEs, which are used to fit the observed time-elongation data. Here, we analyze the effect of aerodynamic drag on CMEs propagating through interplanetary space, and how this drag affects the result of the F\Phi and HM fitting methods. A simple drag model is used to analytically construct time-elongation profiles which are then fitted with the two methods. It is found that higher angles and velocities give rise to greater error in both methods, reaching errors in the direction of propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods, respectively. This is due to the physical accelerations of the CMEs being interpreted as geometrical accelerations by the fitting methods. Because of the geometrical definition of the HM fitting method, it is affected by the acceleration more greatly than the F\Phi fitting method. Overall, we find that both techniques overestimate the initial (and final) velocity and direction for fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that arrival times at 1 AU would be predicted early (by up to 12 hours). We also find that the direction and arrival time of a wide and decelerating CME can be better reproduced by the F\Phi due to the cancellation of two errors: neglecting the CME width and neglecting the CME deceleration. Overall, the inaccuracies of the two fitting methods are expected to play an important role in the prediction of CME hit and arrival times as we head towards solar maximum and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    Effect of Sand and Wood-Shavings Bedding on the Behavior of Broiler Chickens

    Get PDF
    The purpose of this study was to determine the effect of 2 different bedding types, sand and wood shavings, on the behavior of broiler chickens. In experiment 1, 6 pens were divided down the center and bedded half with sand and half with wood shavings. Male broilers (10/pen) were observed by scan sampling at 5- or 12-min intervals throughout the 6-wk growth period during the morning (between 0800 to 0900 h), afternoon (1200 to 1500 h), and night (2300 to 0600 h). There was a significant behavior x substrate x week interaction during the day (P \u3c 0.0001) and at night (P \u3c 0.0002). Drinking, dustbathing, preening, and sitting increased in frequency on the sand side but decreased on the wood shavings side during the day, as did resting at night. In general, broilers performed a greater proportion of their total behavioral time budget on the sand (P \u3c 0.0001) as they aged. Broilers used the divider between the 2 bedding types to perch; perching behavior peaked during wk 4. In experiment 2, male broilers were housed in 8 pens (50 birds/pen) bedded only in sand or wood shavings. Bedding type had no effect on behavioral time budgets (P = 0.8946), although there were age-related changes in behavior on both bedding types. These results indicate that when given a choice, broilers increasingly performed many of their behaviors on sand, but if only one bedding type was provided they performed those behaviors with similar frequency on sand or wood shavings
    corecore