13,802 research outputs found

    Political and Media Discourses about Integrating Refugees in the UK

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This article addresses political and media discourses about integrating refugees in the UK in the context of the “refugee crisis”. A discursive psychological approach is presented as the best way to understand what talk about the concept is used to accomplish in these debates. A large corpus of political discussions (13 hours of debate featuring 146 politicians) and 960 newspaper articles from the UK were discourse analysed. The analysis identified five dilemmas about integration: Integration is positive and necessary, but challenging; Host communities are presented as welcoming, but there are limits to their capacity; Refugees are responsible for integration, but host communities need to provide support; Good refugees integrate, bad ones don't; Refugees are vulnerable and are skilled. All are used to warrant the inclusion or exclusion of refugees. The responsibility of western nations to support refugees is therefore contingent on the refugees behaving in specific ways

    On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder

    Get PDF
    Motivated by applications in aero-engines, steady two-dimensional thin-filmflow on the inside of a circular cylinder is studied when the filmsurface is subject to mass and momentum transfer from impacting droplets. Asymptotic analysis is used systematically to identify distinguished limits that incorporate these transfer effects at leading order and to provide a new mathematical model. Applying both analytical and numerical approaches to the model, a set of stable steady, two-dimensional solutions that fit within the rational framework is determined. A number of these solutions feature steep fronts and associated recirculating pools, which are undesirable in an aeroengine since oil may be stripped away from the steep fronts when there is a core flow external to the film, and recirculation may lead to oil degradation. The model, however, provides a means of investigating whether the formation of the steep fronts on the filmsurface and of internal recirculation pools can be delayed, or inhibited altogether, by designing jets to deliver prescribed distributions of oil droplets or by the judicious siting of oil sinks. Moreover, by studying pathlines, oil-residence times can be predicted and systems optimized

    Experiment K-6-09. Morphological and biochemical investigation of microgravity-induced nerve and muscle breakdown. Part 1: Investigation of nerve and muscle breakdown during spaceflight; Part 2: Biochemical analysis of EDL and PLT muscles

    Get PDF
    The present findings on rat hindlimb muscles suggest that skeletal muscle weakness induced by prolonged spaceflight can result from a combination of muscle fiber atrophy, muscle fiber segmental necrosis, degeneration of motor nerve terminals and destruction of microcirculatory vessels. Damage was confined to the red adductor longus (AL) and soleus muscles. The midbelly region of the AL muscle had more segmental necrosis and edema than the ends. Macrophages and neutrophils were the major mononucleated cells infiltrating and phagocytosing the cellular debris. Toluidine blue-positive mast cells were significantly decreased in Flight AL muscles compared to controls; this indicated that degranulation of mast cells contributed to tissue edema. Increased ubiquitination of disrupted myofibrils may have promoted myofilament degradation. Overall, mitochondria content and SDH activity were normal, except for a decrease in the subsarcolemmal region. The myofibrillar ATPase activity shifted toward the fast type in the Flight AL muscles. Some of the pathological changes may have occurred or been exacerbated during the 2 day postflight period of readaptation to terrestrial gravity. While simple atrophy should be reversible by exercise, restoration of pathological changes depends upon complex processes of regeneration by stem cells. Initial signs of muscle and nerve fiber regeneration were detected. Even though regeneration proceeds on Earth, the space environment may inhibit repair and cause progressive irreversible deterioration during long term missions. Muscles obtained from Flight rats sacrificed immediately (within a few hours) after landing are needed to distinguish inflight changes from postflight readaptation

    Void elimination in screen printed thick film dielectric pastes

    Get PDF
    The problem is to understand the mechanisms for the formation and evolution of defects in wet screen printed layers. The primary objective is to know how best to alter the properties of the paste (rather than the geometry of the screen printing process itself) in order to eliminate the defects. With these goals in mind the work done during the Study Group reported here was as follows; to describe a simple model for the closure of craters, a model for the partial closure of vias, a possible mechanism for the formation of pinholes and finally a more detailed consideration of the screen printing process

    Development and Preliminary Application of Mathematical Models to the Weber Basin

    Get PDF
    The adoption of stream standards, whether for direct application or for the establishment of realistic effluent standards, creates a need to predict the impact of pollution loads on river water quality during critical flow periods or as the result of future user demands. Because of the complexity of aquatic systems, mathematical models are an excellent medium for bringing together the state-of-the-art knowledge from a variety of disciplines into a form which can be readily applied to practical problems. Applying a mathematical model to a river system has the added advantage of providing a structure for the systematic consideration of the many diverse aspects of water quality phenomena. This report describes the development of a river simulation model (QUAL-U) for predicting water quality and its preliminary application to the Weber River drainage basin in northeastern Utah. The model involves the numerical solution of a set of differential equations representing the aquatic system under steady state conditions. The development and use of a second model which provides the flow boundary conditions for the first model is also described. This model is a simple interactive procedure for obtaining flows at specified locations on the river system given the measured flows at other locations and typical flow ranges of headwater, diversions, surface and subsurface lateral inflows, and point loads. Previous river water quality models are reviewed and the structure of QUAL-U is presented. The economic and physical characteristics of the study area are described and the Weber River system is represented by subbasins, reaches, and computational units. Model calibration was based on water quality data collected at over eighty sampling locations in the study area during a four day period in September, 1973. Each of the sampling points was subsequently surveyed to obtain representative hydraulic characteristics for each reach of the river system. Coefficients for the mathematical equations representing hydraulic characteristics and chemical and biological reactions were estimated and adjusted during the model calibration procedure until model responses satisfactorily resembled the observed data. Results for the calibration period and also for studies involving critical low flow conditions are described and model limitations are considered. The work on which this report is based was performed for the State of Utah, Department of Social Services, Division of Health as part of a Waste Load Allocation Study on the Weber River. The scope of this project provided only for supplying the calibrated model to the client and does not include predictive runs or interpretation of management alternatives

    A novel metric for coronal MHD models

    Get PDF
    [1] In the interest of quantitatively assessing the capabilities of coronal MHD models, we have developed a metric that compares the structures of the white light corona observed with SOHO LASCO C2 to model predictions. The MAS model is compared to C2 observations from two Carrington rotations during solar cycle 23, CR1913 and CR1984, which were near the minimum and maximum of solar activity, respectively, for three radial heights, 2.5 R⊙, 3.0 R⊙, and 4.5 R⊙. In addition to simulated polarization brightness images, we create a synthetic image based on the field topology along the line of sight in the model. This open-closed brightness is also compared to LASCO C2 after renormalization. In general, the model\u27s magnetic structure is a closer match to observed coronal structures than the model\u27s density structure. This is expected from the simplified energy equations used in current global corona MHD models

    Emergence of negative viscosities and colored noise under current-driven Ehrenfest molecular dynamics

    Full text link
    Molecules in molecular junctions are subject to current-induced forces that can break chemical bonds, induce reactions, destabilize molecular geometry, and halt the operation of the junction. Theories behind current-driven molecular dynamics simulations rely on a perturbative time-scale separation within the system with subsequent use of nonequilibrium Green's functions (NEGF) to compute conservative, non-conservative, and stochastic forces exerted by electrons on nuclear degrees of freedom. We analyze the effectiveness of this approximation, paying particular attention to the phenomenon of negative viscosities. The perturbative approximation is directly compared to the nonequilibrium Ehrenfest approach. We introduce a novel time-stepping approach to calculate the forces present in the Ehrenfest method via exact integration of the equations of motion for the nonequilibrium Green's functions, which does not necessitate a time-scale separation within the system and provides an exact description for the corresponding classical dynamics. We observe that negative viscosities are not artifacts of a perturbative treatment but also emerge in Ehrenfest dynamics. However, the effects of negative viscosity have the possibility of being overwhelmed by the predominantly positive dissipation due to the higher-order forces unaccounted for by the perturbative approach. Additionally, we assess the validity of the white-noise approximation for the stochastic forces, finding that it is justifiable in the presence of a clear time-scale separation and is more applicable when the current-carrying molecular orbital is moved outside of the voltage window. Finally, we demonstrate the method for molecular junction models consisting of one and two classical degrees of freedom

    Enhanced He-alpha emission from "smoked" Ti targets irradiated with 400nm, 45 fs laser pulses

    Get PDF
    We present a study of He-like 1s(2)-1s2p line emission from solid and low-density Ti targets under similar or equal to 45 fs laser pulse irradiation with a frequency doubled Ti: Sapphire laser. By varying the beam spot, the intensity on target was varied from 10(15) W/cm(2) to 10(19) W/cm(2). At best focus, low density "smoked" Ti targets yield similar to 20 times more He-alpha than the foil targets when irradiated at an angle of 45 degrees with s-polarized pulses. The duration of He-alpha emission from smoked targets, measured with a fast streak camera, was similar to that from Ti foils

    The Whole Heliosphere Interval in the Context of a Long and Structured Solar Minimum: An Overview from Sun to Earth

    Get PDF
    Throughout months of extremely low solar activity during the recent extended solar-cycle minimum, structural evolution continued to be observed from the Sun through the solar wind and to the Earth. In 2008, the presence of long-lived and large low-latitude coronal holes meant that geospace was periodically impacted by high-speed streams, even though solar irradiance, activity, and interplanetary magnetic fields had reached levels as low as, or lower than, observed in past minima. This time period, which includes the first Whole Heliosphere Interval (WHI 1: Carrington Rotation (CR) 2068), illustrates the effects of fast solar-wind streams on the Earth in an otherwise quiet heliosphere. By the end of 2008, sunspots and solar irradiance had reached their lowest levels for this minimum (e.g., WHI 2: CR 2078), and continued solar magnetic-flux evolution had led to a flattening of the heliospheric current sheet and the decay of the low-latitude coronal holes and associated Earth-intersecting high-speed solar-wind streams. As the new solar cycle slowly began, solar-wind and geospace observables stayed low or continued to decline, reaching very low levels by June – July 2009. At this point (e.g., WHI 3: CR 2085) the Sun–Earth system, taken as a whole, was at its quietest. In this article we present an overview of observations that span the period 2008 – 2009, with highlighted discussion of CRs 2068, 2078, and 2085. We show side-by-side observables from the Sun’s interior through its surface and atmosphere, through the solar wind and heliosphere and to the Earth’s space environment and upper atmosphere, and reference detailed studies of these various regimes within this topical issue and elsewhere
    corecore