380 research outputs found

    Pain management procedures used by dental and maxillofacial surgeons: an investigation with special regard to odontalgia

    Get PDF
    BACKGROUND: Little is known about the procedures used by German dental and maxillofacial surgeons treating patients suffering from chronic orofacial pain (COP). This study aimed to evaluate the ambulatory management of COP. METHODS: Using a standardized questionnaire we collected data of dental and maxillofacial surgeons treating patients with COP. Therapists described variables as patients' demographics, chronic pain disorders and their aetiologies, own diagnostic and treatment principles during a period of 3 months. RESULTS: Although only 13.5% of the 520 addressed therapists returned completely evaluable questionnaires, 985 patients with COP could be identified. An orofacial pain syndrome named atypical odontalgia (17.0 %) was frequent. Although those patients revealed signs of chronification, pain therapists were rarely involved (12.5%). For assessing pain the use of Analogue Scales (7%) or interventional diagnostics (4.6%) was uncommon. Despite the fact that surgical procedures are cofactors of COP therapists preferred further surgery (41.9%) and neglected the prescription of analgesics (15.7%). However, most therapists self-evaluated the efficacy of their pain management as good (69.7 %). CONCLUSION: Often ambulatory dental and maxillofacial surgeons do not follow guidelines for COP management despite a high prevalence of severe orofacial pain syndromes

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Chagas disease: an impediment in achieving the Millennium Development Goals in Latin America

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Achieving sustainable economic and social growth through advances in health is crucial in Latin America within the framework of the United Nations Millennium Development Goals.</p> <p>Discussion</p> <p>Health-related Millennium Development Goals need to incorporate a multidimensional approach addressing the specific epidemiologic profile for each region of the globe. In this regard, addressing the cycle of destitution and suffering associated with infection with <it>Trypanosoma cruzi</it>, the causal agent of Chagas disease of American trypanosomiasis, will play a key role to enable the most impoverished populations in Latin America the opportunity to achieve their full potential. Most cases of Chagas disease occur among forgotten populations because these diseases persist exclusively in the poorest and the most marginalized communities in Latin America.</p> <p>Summary</p> <p>Addressing the cycle of destitution and suffering associated with <it>T. cruzi </it>infection will contribute to improve the health of the most impoverished populations in Latin America and will ultimately grant them with the opportunity to achieve their full economic potential.</p

    Investigating the global genomic diversity of Escherichia coli using a multi-genome DNA microarray platform with novel gene prediction strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene content of a diverse group of 183 unique <it>Escherichia coli </it>and <it>Shigella </it>isolates was determined using the Affymetrix GeneChip<sup>® </sup><it>E. coli </it>Genome 2.0 Array, originally designed for transcriptome analysis, as a genotyping tool. The probe set design utilized by this array provided the opportunity to determine the gene content of each strain very accurately and reliably. This array constitutes 10,112 independent genes representing four individual <it>E. coli </it>genomes, therefore providing the ability to survey genes of several different pathogen types. The entire ECOR collection, 80 EHEC-like isolates, and a diverse set of isolates from our FDA strain repository were included in our analysis.</p> <p>Results</p> <p>From this study we were able to define sets of genes that correspond to, and therefore define, the EHEC pathogen type. Furthermore, our sampling of 63 unique strains of O157:H7 showed the ability of this array to discriminate between closely related strains. We found that individual strains of O157:H7 differed, on average, by 197 probe sets. Finally, we describe an analysis method that utilizes the power of the probe sets to determine accurately the presence/absence of each gene represented on this array.</p> <p>Conclusions</p> <p>These elements provide insights into understanding the microbial diversity that exists within extant <it>E. coli </it>populations. Moreover, these data demonstrate that this novel microarray-based analysis is a powerful tool in the field of molecular epidemiology and the newly emerging field of microbial forensics.</p

    Risk factors for differential outcome following directly observed treatment (DOT) of slum and non-slum tuberculosis patients: a retrospective cohort study

    Full text link
    BACKGROUND: Brazil’s National Tuberculosis Control Program seeks to improve tuberculosis (TB) treatment in vulnerable populations. Slum residents are more vulnerable to TB due to a variety of factors, including their overcrowded living conditions, substandard infrastructure, and limited access to healthcare compared to their non-slum dwelling counterparts. Directly observed treatment (DOT) has been suggested to improve TB treatment outcomes among vulnerable populations, but the program’s differential effectiveness among urban slum and non-slum residents is not known. METHODS: We retrospectively compared the impact of DOT on TB treatment outcome in residents of slum and non-slum census tracts in Rio de Janeiro reported to the Brazilian Notifiable Disease Database in 2010. Patient residential addresses were geocoded to census tracts from the 2010 Brazilian Census, which were identified as slum (aglomerados subnormais -AGSN) and non-slum (non-AGSN) by the Census Bureau. Homeless and incarcerated cases as well as those geocoded outside the city’s limits were excluded from analysis. RESULTS: In 2010, 6,601 TB cases were geocoded within Rio de Janeiro; 1,874 (27.4 %) were residents of AGSN, and 4,794 (72.6 %) did not reside in an AGSN area. DOT coverage among AGSN cases was 35.2 % (n = 638), while the coverage in non-AGSN cases was 26.2 % (n = 1,234). Clinical characteristics, treatment, follow-up, cure, death and abandonment were similar in both AGSN and non-AGSN TB patients. After adjusting for covariates, AGSN TB cases on DOT had 1.67 (95 % CI: 1.17, 2.4) times the risk of cure, 0.61 (95 % CI: 0.41, 0.90) times the risk of abandonment, and 0.1 (95 % CI: 0.01, 0.77) times the risk of death from TB compared to non-AGSN TB cases not on DOT. CONCLUSION: While DOT coverage was low among TB cases in both AGSN and non-AGSN communities, it had a greater impact on TB cure rate in AGSN than in non-AGSN populations in the city of Rio de Janeiro

    Whole genome sequencing,molecular typing and in vivovirulence of OXA-48-producingEscherichia coli isolates includingST131 H30-Rx, H22 and H41subclones

    Get PDF
    Carbapenem-resistant Enterobacteriaceae, including the increasingly reported OXA-48 Escherichia coli producers, are an emerging public health threat worldwide. Due to their alarming detection in our healthcare setting and their possible presence in the community, seven OXA-48-producing, extraintestinal pathogenic E. coli were analysed by whole genome sequencing as well as conventional tools, and tested for in vivo virulence. As a result, five E. coli OXA-48-producing subclones were detected (O25:H4-ST131/PST43-fimH30-virotype E; O25:H4-ST131/PST9-fimH22-virotype D5, O16:H5-ST131/ PST506-fimH41; O25:H5-ST83/PST207 and O9:H25-ST58/PST24). Four ST131 and one ST83 isolates satisfied the ExPEC status, and all except the O16:H5 ST131 isolate were UPEC. All isolates exhibited local inflammatory response with extensive subcutaneous necrosis but low lethality when tested in a mouse sepsis model. The blaOXA-48 gene was located in MOBP131/IncL plasmids (four isolates) or within the chromosome (three ST131 H30-Rx isolates), carried by Tn1999-like elements. All, except the ST83 isolate, were multidrug-resistant, with additional plasmids acting as vehicles for the spread of various resistance genes. This is the first study to analyse the whole genome sequences of blaOXA-48-positive ST131, ST58 and ST83 E. coli isolates in conjunction with experimental data, and to evaluate the in vivo virulence of blaOXA-48 isolates, which pose an important challenge to patient management
    corecore