134 research outputs found

    Acute exposure of primary rat soleus muscle to zilpaterol HCl (β2 adrenergic agonist), TNFα, or IL-6 in culture increases glucose oxidation rates independent of the impact on insulin signaling or glucose uptake

    Get PDF
    Recent studies show that adrenergic agonists and inflammatory cytokines can stimulate skeletal muscle glucose uptake, but it is unclear if glucose oxidation is similarly increased. Thus, the objective of this study was to determine the effects of ractopamine HCl (β1 agonist), zilpaterol HCl (β2 agonist), TNFα, and IL-6 on glucose uptake and oxidation rates in unstimulated and insulin-stimulated soleus muscle strips from adult Sprague-Dawley rats. Effects on phosphorylation of Akt (phospho-Akt), p38 MAPK (phospho-p38), and p44/42 MAPK (phospho-p44/42) was also determined. Incubation with insulin increased (P \u3c 0.05) glucose uptake by ~47%, glucose oxidation by ~32%, and phospho-Akt by ~238%. Insulin also increased (P \u3c 0.05) phospho-p38, but only after 2 hours in incubation. Muscle incubated with β2 agonist alone exhibited ~20% less (P \u3c 0.05) glucose uptake but ~32% greater (P \u3c 0.05) glucose oxidation than unstimulated muscle. Moreover, co-incubation with insulin + β2 agonist increased (P \u3c 0.05) glucose oxidation and phospho-Akt compared to insulin alone. Conversely, β1 agonist did not appear to affect basal or insulin-stimulated glucose metabolism, and neither β agonist affected phospho-p44/42. TNFα and IL-6 increased (P \u3c 0.05) glucose oxidation by ~23% and ~33%, respectively, in the absence of insulin. This coincided with increased (P \u3c 0.05) phospho-p38 and phospho-p44/42 but not phospho-Akt. Furthermore, co-incubation of muscle with insulin + either cytokine yielded glucose oxidation rates that were similar to insulin alone, despite lower (P \u3c 0.05) phospho-Akt. Importantly, cytokine-mediated increases in glucose oxidation rates were not concomitant with greater glucose uptake. These results show that acute β2 adrenergic stimulation, but not β1 stimulation, directly increases fractional glucose oxidation in the absence of insulin and synergistically increases glucose oxidation when combined with insulin. The cytokines, TNFα and IL-6, likewise directly increased glucose oxidation in the absence of insulin, but were not additive in combination with insulin and in fact appeared to disrupt Akt-mediated insulin signaling. Rather, cytokines appear to be acting through MAPKs to elicit effects on glucose oxidation. Regardless, stimulation of glucose oxidation by these key stress factors did not rely upon greater glucose uptake, which may promote metabolic efficiency during acute stress by increasing fractional glucose oxidation without increasing total glucose consumption by muscle

    Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term

    Get PDF
    Maternal inflammation induces intrauterine growth restriction (MI-IUGR) of the fetus, which compromises metabolic health in human offspring and reduces value in livestock. The objective of this study was to determine the effect of maternal inflammation at midgestation on fetal skeletal muscle growth and myoblast profiles at term. Pregnant Sprague-Dawley rats were injected daily with bacterial endotoxin (MI-IUGR) or saline (controls) from the 9th to the 11th day of gestational age (dGA; term = 21 dGA). At necropsy on dGA 20, average fetal mass and upper hindlimb cross-sectional areas were reduced (P \u3c 0.05) in MI-IUGR fetuses compared with controls. MyoD+ and myf5+ myoblasts were less abundant (P \u3c 0.05), and myogenin+ myoblasts were more abundant (P \u3c 0.05) in MI-IUGR hindlimb skeletal muscle compared with controls, indicating precocious myoblast differentiation. Type I and Type II hindlimb muscle fibers were smaller (P \u3c 0.05) in MI-IUGR fetuses than in controls, but fiber type proportions did not differ between experimental groups. Fetal blood plasma TNFα concentrations were below detectable amounts in both experimental groups, but skeletal muscle gene expression for the cytokine receptors TNFR1, IL6R, and FN14 was greater (P \u3c 0.05) in MI-IUGR fetuses than controls, perhaps indicating enhanced sensitivity to these cytokines. Maternal blood glucose concentrations at term did not differ between experimental groups, but MI-IUGR fetal blood contained less (P \u3c 0.05) glucose, cholesterol, and triglycerides. Fetal-to-maternal blood glucose ratios were also reduced (P \u3c 0.05), which is indicative of placental insufficiency. Indicators of protein catabolism, including blood plasma urea nitrogen and creatine kinase, were greater (P \u3c 0.05) in MI-IUGR fetuses than in controls. From these findings, we conclude that maternal inflammation at midgestation causes muscle-centric fetal programming that impairs myoblast function, increases protein catabolism, and reduces skeletal muscle growth near term. Fetal muscle sensitivity to inflammatory cytokines appeared to be enhanced after maternal inflammation, which may represent a mechanistic target for improving these outcomes in MI-IUGR fetuses

    Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term

    Get PDF
    Intrauterine growthrestricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term. Am J Physiol Regul Integr Comp Physiol 310: R1020–R1029, 2016. First published April 6, 2016; doi:10.1152/ajpregu.00528.2015.—Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fibertype ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were 54% smaller (P \u3c 0.05) than controls and exhibited hypoxemia and hypoglycemia, which contributed to 6.9- fold greater (P \u3c 0.05) plasma norepinephrine and 53% lower (P \u3c 0.05) plasma insulin concentrations. IUGR semitendinosus muscles contained less (P \u3c 0.05) myosin heavy chain-I protein (MyHC-I) and proportionally fewer (P \u3c 0.05) Type I and Type I/IIa fibers than controls, but MyHC-II protein concentrations, Type II fibers, and Type IIx fibers were not different. IUGR biceps femoris muscles exhibited similar albeit less dramatic differences in fiber type proportions. Type I and IIa fibers are more responsive to adrenergic and insulin regulation than Type IIx and may be more profoundly impaired by the high catecholamines and low insulin in our IUGR fetuses, leading to their proportional reduction. In both muscles, fibers of each type were uniformly smaller (P \u3c 0.05) in IUGR fetuses than controls, which indicates that fiber hypertrophy is not dependent on type but rather on other factors such as myoblast differentiation or protein synthesis. Together, our findings show that IUGR fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistanc

    Diet Significantly Influences the Immunopathology and Severity of Kidney Injury in Male C57Bl/6J Mice in a Model Dependent Manner

    Get PDF
    Diet is a leading causative risk factor for morbidity and mortality worldwide, yet it is rarely considered in the design of preclinical animal studies. Several of the nutritional inadequacies reported in Americans have been shown to be detrimental to kidney health; however, the mechanisms responsible are unclear and have been largely attributed to the development of diabetes or hypertension. Here, we set out to determine whether diet influences the susceptibility to kidney injury in male C57Bl/6 mice. Mice were fed a standard chow diet, a commercially available “Western” diet (WD), or a novel Americanized diet (AD) for 12 weeks prior to the induction of kidney injury using the folic acid nephropathy (FAN) or unilateral renal ischemia reperfusion injury (uIRI) models. In FAN, the mice that were fed the WD and AD had worse histological evidence of tissue injury and greater renal expression of genes associated with nephrotoxicity and monocyte infiltration as compared to mice fed chow. Mice fed the AD developed more severe renal hypertrophy following FAN, and gene expression data suggest the mechanism for FAN differed among the diets. Meanwhile, mice fed the WD had the greatest circulating interleukin-6 concentrations. In uIRI, no difference was observed in renal tissue injury between the diets; however, mice fed the WD and AD displayed evidence of suppressed inflammatory response. Taken together, our data support the hypothesis that diet directly impacts the severity and pathophysiology of kidney disease and is a critical experimental variable that needs to be considered in mechanistic preclinical animal studies

    Woman-Centered Design through Humanity, Activism, and Inclusion

    Get PDF
    Women account for over half of the global population, however, continue to be subject to systematic and systemic disadvantage, particularly in terms of access to health and education. At every intersection, where systemic inequality accounts for greater loss of life or limitations on full and healthy living, women are more greatly impacted by those inequalities. The design of technologies is no different, the very definition of technology is historically cast in terms of male activities, and advancements in the field are critical to improve women's quality of life. This article views HCI, a relatively new field, as well positioned to act critically in the ways that technology serve, refigure, and redefine women's bodies. Indeed, the female body remains a contested topic, a restriction to the development of women's health. On one hand, the field of women's health has attended to the medicalization of the body and therefore is to be understood through medical language and knowledge. On the other hand, the framing of issues associated with women's health and people's experiences of and within such system(s) remain problematic for many. This is visible today in, e.g., socio-cultural practices in disparate geographies or medical devices within a clinic or the home. Moreover, the biological body is part of a great unmentionable, i.e., the perils of essentialism. We contend that it is necessary, pragmatically and ethically, for HCI to turn its attention toward a woman-centered design approach. While previous research has argued for the dangers of gender-demarcated design work, we advance that designing for and with women should not be regarded as ghettoizing, but instead as critical to improving women's experiences in bodily transactions, choices, rights, and access to and in health and care. In this article, we consider how and why designing with and for woman matters. We use our design-led research as a way to speak to and illustrate alternatives to designing for and with women within HCI.QC 20200930</p

    Utilizing Technology for Diet and Exercise Change in Complex Chronic Conditions Across Diverse Environments (U-DECIDE): Protocol for a Randomized Controlled Trial

    Get PDF
    BACKGROUND: The metabolic syndrome is common across many complex chronic disease groups. Advances in health technology have provided opportunities to support lifestyle interventions. OBJECTIVE: The purpose of this study is to test the feasibility of a health technology-assisted lifestyle intervention in a patient-led model of care. METHODS: The study is a single-center, 26-week, randomized controlled trial. The setting is specialist kidney and liver disease clinics at a large Australian tertiary hospital. The participants will be adults with a complex chronic condition who are referred for dietetic assessment and display at least one feature of the metabolic syndrome. All participants will receive an individualized assessment and advice on diet quality from a dietitian, a wearable activity monitor, and standard care. Participants randomized to the intervention group will receive access to a suite of health technologies from which to choose, including common base components (text messages) and optional components (online and mobile app–based nutrition information, an online home exercise program, and group-based videoconferencing). Exposure to the optional aspects of the intervention will be patient-led, with participants choosing their preferred level of engagement. The primary outcome will be the feasibility of delivering the program, determined by safety, recruitment rate, retention, exposure uptake, and telehealth adherence. Secondary outcomes will be clinical effectiveness, patient-led goal attainment, treatment fidelity, exposure demand, and participant perceptions. Primary outcome data will be assessed descriptively and secondary outcomes will be assessed using an analysis of covariance. This study will provide evidence on the feasibility of the intervention in a tertiary setting for patients with complex chronic disease exhibiting features of the metabolic syndrome. RESULTS: The study was funded in 2019. Enrollment has commenced and is expected to be completed by June 2022. Data collection and follow up are expected to be completed by December 2022. Results from the analyses based on primary outcomes are expected to be submitted for publication by June 2023. CONCLUSIONS: The study will test the implementation of a health technology–assisted lifestyle intervention in a tertiary outpatient setting for a diverse group of patients with complex chronic conditions. It is novel in that it embeds patient choice into intervention exposure and will inform health service decision-makers in regards to the feasibility of scale and spread of technology-assisted access to care for a broader reach of specialist services. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry ACTRN12620001282976; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=378337 INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/3755

    Distinct phenotypes associated with mangrove and lagoon habitats in two widespread caribbean corals, porites astreoides and porites divaricata.

    Get PDF
    AbstractAs coral reefs experience dramatic declines in coral cover throughout the tropics, there is an urgent need to understand the role that non-reef habitats, such as mangroves, play in the ecological niche of corals. Mangrove habitats present a challenge to reef-dwelling corals because they can differ dramatically from adjacent reef habitats with respect to key environmental parameters, such as light. Because variation in light within reef habitats is known to drive intraspecific differences in coral phenotype, we hypothesized that coral species that can exploit both reef and mangrove habitats will exhibit predictable differences in phenotypes between habitats. To investigate how intraspecific variation, driven by either local adaptation or phenotypic plasticity, might enable particular coral species to exploit these two qualitatively different habitat types, we compared the phenotypes of two widespread Caribbean corals, Porites divaricata and Porites astreoides, in mangrove versus lagoon habitats on Turneffe Atoll, Belize. We document significant differences in colony size, color, structural complexity, and corallite morphology between habitats. In every instance, the phenotypic differences between mangrove prop root and lagoon corals exhibited consistent trends in both P. divaricata and P. astreoides. We believe this study is the first to document intraspecific phenotypic diversity in corals occupying mangrove prop root versus lagoonal patch reef habitats. A difference in the capacity to adopt an alternative phenotype that is well suited to the mangrove habitat may explain why some reef coral species can exploit mangroves, while others cannot.Published versio
    • …
    corecore