8 research outputs found

    Análisis de métodos de identificación automática de llegadas de fases P y su aplicación a las señales sismo-volcánicas del Misti (Perú)

    Get PDF
    Describe el análisis de seis métodos utilizados en la identificación automática de fases P aplicados a 150 eventos VT registrados por la red sísmica volcán Misti. Tres de ellos son convencionales y están basados en el análisis de la energía, la curtosis y el criterio de información Akaike (AIC). Dos fueron desarrollados a partir del periodo predominante amortiguado (Tpd), y del análisis de envolvente multi-banda (AMPA). Así mismo, en este trabajo se propone un método novedoso, denominado “AR-K”. Este método consiste en combinar un análisis autorregresivo de la señal y la curtosis del error de predicción como función característica (CF). Además de este enfoque novedoso, también se utilizó la potencia específica instantánea, la cual permitió realzar la llegada de la onda P y comparar la precisión y exactitud de los métodos con dos tipos de datos: originales y realzados. Se buscó identificar de manera automática 655 fases P; los resultados muestran que el método AR-K es el que detectó el menor número de identificaciones falsas y el que mejor detecta la llegada de ondas P, con un 99% de aciertos utilizando los datos originales. Luego, destacan los métodos AMPA, Tpd y AIC ajustándose mejor a los datos realzados. El método AR-K también demostró ser el más preciso con una diferencia mínima de 0.02±0.02s, con los datos originales y 0.01±0.02s, con los datos realzados. Los métodos AMPA y Tpd, además de su precisión, destacan por su rapidez. Estos tres métodos muestran un buen desempeño y son propuestos para realizar sistemáticamente la identificación automática de fases P para los datos del volcán Misti.Perú. Autoridad Nacional del Servicio Civil (Servir) : Beca Reto ExcelenciaTrabajo de investigació

    Aparente influencia de la marea terrestre en la actividad hidrotermal del volcán Misti observada en datos de temperatura

    Get PDF
    En este trabajo se presentan los resultados preliminares del monitoreo de temperatura del suelo a 30 cm de profundidad en el cráter del volcán Misti en el periodo 2004-2011. La posible contribución de las mareas terrestres en el disparo de erupciones volcánicas ha sido observada en ambientes de volcanismo basáltico (Dzurisin, 1980; Van Manen et al., 2010; Sottili & Palladino, 2012), pero no se han reportado tal tipo de fenómeno en volcanes de arco. El volcán Misti es un volcán andesítico activo que no está en erupción pero que presenta, por ciertos lapsos de tiempo, una actividad fumarólica intensa al nivel de su cráter interno y en sus inmediaciones. El objetivo del presente trabajo es mostrar que en el volcán Misti se han observado variaciones de tipo periódico de la temperatura del suelo, y que dichas variaciones podrían tener asociación con las mareas terrestres. Los datos de temperatura provienen de la cúspide del volcán, a inmediaciones de la zona de fumarolas del cráter; los datos de la marea terrestre provienen de cálculos teóricos válidos para la zona donde se ubica el volcán

    Thermal Remote Sensing for Global Volcano Monitoring: Experiences From the MIROVA System

    Get PDF
    Volcanic activity is always accompanied by the transfer of heat from the Earth's crust to the atmosphere. This heat can be measured from space and its measurement is a very useful tool for detecting volcanic activity on a global scale. MIROVA (Middle Infrared Observation of Volcanic Activity) is an automatic volcano hot spot detection system, based on the analysis of MODIS data (Moderate Resolution Imaging Spectroradiometer). The system is able to detect, locate and quantify thermal anomalies in near real-time, by providing, on a dedicated website (www.mirovaweb.it), infrared images and thermal flux time-series on over 200 volcanoes worldwide. Thanks to its simple interface and intuitive representation of the data, MIROVA is currently used by several volcano observatories for daily monitoring activities and reporting. In this paper, we present the architecture of the system and we provide a state of the art on satellite thermal data usage for operational volcano monitoring and research. In particular, we describe the contribution that the thermal data have provided in order to detect volcanic unrest, to forecast eruptions and to depict trends and patterns during eruptive crisis. The current limits and requirements to improve the quality of the data, their distribution and interpretation are also discussed, in the light of the experience gained in recent years within the volcanological community. The results presented clearly demonstrate how the open access of satellite thermal data and the sharing of derived products allow a better understanding of ongoing volcanic phenomena, and therefore constitute an essential requirement for the assessment of volcanic hazards. Peer reviewe

    Thermal Remote Sensing for Global Volcano Monitoring: Experiences From the MIROVA System

    Get PDF
    Volcanic activity is always accompanied by the transfer of heat from the Earth’s crust to the atmosphere. This heat can be measured from space and its measurement is a very useful tool for detecting volcanic activity on a global scale. MIROVA (Middle Infrared Observation of Volcanic Activity) is an automatic volcano hot spot detection system, based on the analysis of MODIS data (Moderate Resolution Imaging Spectroradiometer). The system is able to detect, locate and quantify thermal anomalies in near real-time, by providing, on a dedicated website (www.mirovaweb.it), infrared images and thermal flux time-series on over 200 volcanoes worldwide. Thanks to its simple interface and intuitive representation of the data, MIROVA is currently used by several volcano observatories for daily monitoring activities and reporting. In this paper, we present the architecture of the system and we provide a state of the art on satellite thermal data usage for operational volcano monitoring and research. In particular, we describe the contribution that the thermal data have provided in order to detect volcanic unrest, to forecast eruptions and to depict trends and patterns during eruptive crisis. The current limits and requirements to improve the quality of the data, their distribution and interpretation are also discussed, in the light of the experience gained in recent years within the volcanological community. The results presented clearly demonstrate how the open access of satellite thermal data and the sharing of derived products allow a better understanding of ongoing volcanic phenomena, and therefore constitute an essential requirement for the assessment of volcanic hazards

    Observaciones de intranquilidad en el volcán Sabancaya iniciada el 22 de febrero de 2013

    Get PDF
    El 22 de Febrero 2013 en un lapso de solo 95 minutos han ocurrido 3 sismos de magnitudes 4.6, 5.2 y 5.0 ML en inmediaciones del volcán Sabancaya (15.78° S, 71.85°W, 5976 m, Fig 1), en el sur del Perú, causando destrucción de 18 viviendas en Maca, poblado situado en el valle del Colca, a 20 km al NE del cráter

    Evaluación del riesgo volcánico en el sur del Perú, situación de la vigilancia actual y requerimientos de monitoreo en el futuro. Informe técnico

    Get PDF
    En el presente trabajo se efectúa una estimación semicuantitativa, orientada a la evaluación objetiva del riesgo volcánico que representa la actividad volcánica a nivel nacional. Este sistema es una adaptación del modelo utilizado por el Servicio Geológico de los Estados Unidos (USGS) denominado “National Volcano Early Warning System” (NVEWS) desarrollado por Ewert et al. (2005). En todas las etapas de análisis (factores de peligro, y de factores de exposición) para la determinación del nivel de riesgo volcánico, así como la compilación de la instrumentación actualmente instalada sobre los volcanes del sur del Perú, se ha trabajado conjunta y coordinadamente entre especialistas del Observatorio Vulcanológico del Sur (OVS), Observatorio Vulcanológico de INGEMMET (OVI) y del Observatorio Geofísico de la Universidad Nacional de San Agustín (UNSA). Con este trabajo se busca clasificar a los 16 volcanes activos y potencialmente activos de nuestro país, en grupos de nivel de Riesgo Volcánico Relativo. Por otro lado, en este trabajo se establece también el grado o nivel óptimo de monitoreo y vigilancia actual para cada uno de los volcanes según su respectivo nivel de riesgo, de modo que posteriormente se hace una comparación entre el nivel óptimo y el nivel de vigilancia actualmente alcanzado. Se determina así cuánto falta aún por avanzar en la implementación de instrumental especializado para alcanzar una adecuada vigilancia de la actividad volcánica en el Perú

    Thermal remote sensing for global volcano monitoring: Experiences from the MIROVA system

    No full text
    International audienceMIROVA (Middle Infrared Observation of Volcanic Activity) is an automatic volcano hot spot detection system, based on the analysis of MODIS data (Moderate Resolution Imaging Spectroradiometer). The system is able to detect, locate and quantify thermal anomalies in near real-time, by providing, on a dedicated website (www.mirovaweb.it), infrared images and thermal flux time-series on over 200 volcanoes worldwide. Thanks to its simple interface and intuitive representation of the data, MIROVA is currently used by several volcano observatories for daily monitoring activities and reporting. In this paper, we present the architecture of the system and its use for operational volcano monitoring and research. Particular emphasis will be given to the contribution that the thermal data has provided in order to detect volcanic unrest, to forecast eruptions and to depict trends and patterns during eruptive crisis. The current limits and requirements to improve the quality of the data, their distribution and interpretation are also discussed, in the light of the experience gained in recent years within the volcanological community. The results presented clearly demonstrate how the open access of satellite data and the sharing of derived products allow a better understanding of ongoing volcanic phenomena, and therefore constitute an essential requirement for the assessment of volcanic hazards
    corecore