79 research outputs found

    Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome. Molecular Mechanisms and Signaling through Lipid Rafts

    Get PDF
    The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new " immunomodulatory drugs

    Targeting lipid rafts as a strategy against coronavirus

    Get PDF
    Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-ÎČ-cyclodextrin (MÎČCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host–guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus

    The role of cardiolipin as a scaffold mitochondrial phospholipid in autophagosome formation: In vitro evidence

    Get PDF
    Cardiolipin (CL) is a hallmark phospholipid localized within the inner mitochondrial membrane. Upon several mitochondrial stress conditions, CL is translocated to specialized plat-forms, where it may play a role in signaling events to promote mitophagy and apoptosis. Recent studies characterized the molecular composition of MAM-associated lipid microdomains and their implications in regulating the autophagic process. In this study we analyzed the presence of CL within MAMs following autophagic stimulus and the possible implication of raft-like microdomains enriched in CL as a signaling platform in autophagosome formation. Human 2FTGH fibroblasts and SKNB-E-2 cells were stimulated under nutrient deprivation with HBSS. MAM fraction was obtained by an ultracentrifugation procedure and analyzed by HPTLC immunostaining. CL interactions with mitofusin2 (MFN2), calnexin (CANX) and AMBRA1 were analyzed by scanning confocal microscopy and coimmunoprecipitation. The analysis revealed that CL accumulates in MAMs fractions following autophagic stimulus, where it interacts with MFN2 and CANX. It associates with AMBRA1, which in turn interacts with BECN1 and WIPI1. This study demonstrates that CL is present in MAM fractions following autophagy triggering and interacts with the multimolecular complex (AMBRA1/BECN1/WIPI1) involved in autophagosome formation. It may have both structural and functional implications in the pathophysiology of neurodegenerative disease(s)

    Il consumo di suolo in Italia - Edizione 2015

    Get PDF
    Nel nostro Paese si continua a consumare suolo e la seconda edizione del Rapporto ISPRA fornisce un quadro completo sull’avanzata della copertura artificiale del nostro territorio. Il Rapporto sul consumo di suolo in Italia 2015 integra nuove informazioni, aggiorna le precedenti stime sulla base di dati a maggiore risoluzione e completa il quadro nazionale con specifici indicatori per regioni, province e comuni. Sono, inoltre, approfonditi alcuni aspetti che caratterizzano le dinamiche di espansione urbana e di trasformazione del paesaggio a scala nazionale e locale con riferimento alla fascia costiera, alle aree montane, ai corpi idrici, alle aree protette, alle aree a pericolosità idraulica, all’uso del suolo, alle forme e alle densità di urbanizzazione, ai fenomeni dello sprawl urbano, della frammentazione, della dispersione e della diffusione insediativa

    Antiphospholipid antibodies in patients with stroke during COVID-19: A role in the signaling pathway leading to platelet activation

    Get PDF
    Background: Several viral and bacterial infections, including COVID-19, may lead to both thrombotic and hemorrhagic complications. Previously, it has been demonstrated an "in vitro " pathogenic effect of "antiphospholipid " antibodies (aPLs), which are able to activate a proinflammatory and procoagulant phenotype in monocytes, endothelial cells and platelets. This study analyzed the occurrence of aPL IgG in patients with acute ischemic stroke (AIS) during COVID-19, evaluating the effect of Ig fractions from these patients on signaling and functional activation of platelets. Materials and methods: Sera from 10 patients with AIS during COVID-19, 10 non-COVID-19 stroke patients, 20 COVID-19 and 30 healthy donors (HD) were analyzed for anti-cardiolipin, anti-beta 2-GPI, anti-phosphatidylserine/prothrombin and anti-vimentin/CL antibodies by ELISA. Platelets from healthy donors were incubated with Ig fractions from these patients or with polyclonal anti-beta 2-GPI IgG and analyzed for phospho-ERK and phospho-p38 by western blot. Platelet secretion by ATP release dosage was also evaluated. Results: We demonstrated the presence of aPLs IgG in sera of patients with AIS during COVID-19. Treatment with the Ig fractions from these patients or with polyclonal anti-beta 2-GPI IgG induced a significant increase of phospho-ERK and phospho-p38 expression. In the same vein, platelet activation was supported by the increase of adenyl nucleotides release induced by Ig fractions. Conclusions: This study demonstrates the presence of aPLs in a subgroup of COVID-19 patients who presented AIS, suggesting a role in the mechanisms contributing to hypercoagulable state in these patients. Detecting these antibodies as a serological marker to check and monitor COVID-19 may contribute to improve the risk stratification of thromboembolic manifestations in these patients

    Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs

    Get PDF
    Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the “integrity” of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes. Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/ÎČ-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks’ balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1

    Role of a Novel Heparanase Inhibitor on the Balance between Apoptosis and Autophagy in U87 Human Glioblastoma Cells

    Get PDF
    Background: Heparanase (HPSE) is an endo-& beta;-glucuronidase that cleaves heparan sulfate side chains, leading to the disassembly of the extracellular matrix, facilitating cell invasion and metastasis dissemination. In this research, we investigated the role of a new HPSE inhibitor, RDS 3337, in the regulation of the autophagic process and the balance between apoptosis and autophagy in U87 glioblastoma cells. Methods: After treatment with RDS 3337, cell lysates were analyzed for autophagy and apoptosis-related proteins by Western blot. Results: We observed, firstly, that LC3II expression increased in U87 cells incubated with RDS 3337, together with a significant increase of p62/SQSTM1 levels, indicating that RDS 3337 could act through the inhibition of autophagic-lysosomal flux of LC3-II, thereby leading to accumulation of lipidated LC3-II form. Conversely, the suppression of autophagic flux could activate apoptosis mechanisms, as revealed by the activation of caspase 3, the increased level of cleaved Parp1, and DNA fragmentation. Conclusions: These findings support the notion that HPSE promotes autophagy, providing evidence that RDS 3337 blocks autophagic flux. It indicates a role for HPSE inhibitors in the balance between apoptosis and autophagy in U87 human glioblastoma cells, suggesting a potential role for this new class of compounds in the control of tumor growth progression

    Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

    Full text link
    The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy Îł\gamma-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte--Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a Îł\gamma-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 hours of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with O(100)\mathcal{O}(100) hours of exposure per source.Comment: 34 pages, 16 figures, Accepted for publication in Astroparticle Physic

    The ASTUTE Health study protocol: deliberative stakeholder engagements to inform implementation approaches to healthcare disinvestment

    Get PDF
    BACKGROUND Governments and other payers are yet to determine optimal processes by which to review the safety, effectiveness, and cost-effectiveness of technologies and procedures that are in active use within health systems, and rescind funding (partially or fully) from those that display poor profiles against these parameters. To further progress a disinvestment agenda, a model is required to support payers in implementing disinvestment in a transparent manner that may withstand challenge from vested interests and concerned citizens. Combining approaches from health technology assessment and deliberative democratic theory, this project seeks to determine if and how wide stakeholder engagement can contribute to improved decision-making processes, wherein the views of both vested and non-vested stakeholders are seen to contribute to informing policy implementation within a disinvestment context. METHODS/DESIGN Systematic reviews pertaining to illustrative case studies were developed and formed the evidence base for discussion. Review findings were presented at a series of deliberative, evidence-informed stakeholder engagements, including partisan (clinicians and consumers) and non-partisan (representative community members) stakeholders. Participants were actively facilitated towards identifying shared and dissenting perspectives regarding public funding policy for each of the case studies and developing their own funding models in response to the evidence presented. Policy advisors will subsequently be invited to evaluate disinvestment options based on the scientific and colloquial evidence presented to them, and to explore the value of this information to their decision-making processes with reference to disinvestment. DISCUSSION Analysis of the varied outputs of the deliberative engagements will contribute to the methodological development around how to best integrate scientific and colloquial evidence for consideration by policy advisors. It may contribute to the legitimization of broad and transparent stakeholder engagement in this context. It is anticipated that decision making will benefit from the knowledge delivered through informed deliberation with engaged stakeholders, and this will be explored through interviews with key decision makers.Amber M Watt, Janet E Hiller, Annette J Braunack-Mayer, John R Moss, Heather Buchan, Janet Wale, Dagmara E Riitano, Katherine Hodgetts, Jackie M Street and Adam G Elshaug, for the ASTUTE Health study grou

    Technical and scientific performance of the prototype Schwarzschild-Couder telescope for CTA

    Get PDF
    The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma rays. One candidate design for CTA's medium-sized telescopes consists of the Schwarzschild-Couder Telescope (SCT), featuring innovative dual-mirror optics. The SCT project has built and is currently operating a 9.7-m prototype SCT (pSCT) at the Fred Lawrence Whipple Observatory (FLWO); such optical design enables the use of a compact camera with state-of-the art silicon photomultiplier detectors. A partially-equipped camera has recently successfully detected the Crab Nebula with a statistical significance of 8.6 standard deviations. A funded upgrade of the pSCT focal plane sensors and electronics is currently ongoing, which will bring the total number of channels from 1600 to 11328 and the telescope field of view from about 2.7° to 8° . In this work, we will describe the technical and scientific performance of the pSCT
    • 

    corecore