258 research outputs found

    On the far-infrared metallicity diagnostics: applications to high-redshift galaxies

    Full text link
    In an earlier paper we modeled the far-infrared emission from a star-forming galaxy using the photoionisation code CLOUDY and presented metallicity sensitive diagnostics based on far-infrared fine structure line ratios. Here, we focus on the applicability of the [OIII]88/[NII]122 microns line ratio as a gas phase metallicity indicator in high redshift submillimetre luminous galaxies. The [OIII]88/[NII]122 microns ratio is strongly dependent on the ionization parameter (which is related to the total number of ionizing photons) as well as the gas electron density. We demonstrate how the ratio of 88/$122 continuum flux measurements can provide a reasonable estimate of the ionization parameter while the availability of the [NII]205 microns line can constrain the electron density. Using the [OIII]88/[NII]122 microns line ratios from a sample of nearby normal and star-forming galaxies we measure their gas phase metallicities and find that their mass metallicity relation is consistent with the one derived using optical emission lines. Using new, previously unpublished, Herschel spectroscopic observations of key far-infrared fine structure lines of the z~3 galaxy HLSW-01 and additional published measurements of far-infrared fine structure lines of high-z submillimetre luminous galaxies we derive gas phase metallicities using their [OIII]88/[NII]122 microns line ratio. We find that the metallicities of these z~3 submm luminous galaxies are consistent with solar metallicities and that they appear to follow the mass-metallicity relation expected for z~3 systems.Comment: 10 pages, 7 figures, MNRAS in pres

    Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs

    Full text link
    The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded AGNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.Comment: 15 Pages, 2 figures, Accepted for Publication in Ap

    A Spitzer Infrared Spectrograph Survey of Warm Molecular Hydrogen in Ultra-luminous Infrared Galaxies

    Get PDF
    We have conducted a survey of Ultra-luminous Infrared Galaxies (ULIRGs) with the Infrared Spectrograph on the Spitzer Space Telescope, obtaining spectra from 5.0-38.5um for 77 sources with 0.02<z <0.93. Observations of the pure rotational H2 lines S(3) 9.67um, S(2) 12.28um, and S(1) 17.04um are used to derive the temperature and mass of the warm molecular gas. We detect H2 in 77% of the sample, and all ULIRGs with F(60um)>2Jy. The average warm molecular gas mass is ~2x10^8solar-masses. High extinction, inferred from the 9.7um silicate absorption depth, is not observed along the line of site to the molecular gas. The derived H2 mass does not depend on F(25um)/F(60um), which has been used to infer either starburst or AGN dominance. Similarly, the molecular mass does not scale with the 25 or 60um luminosities. In general, the H2 emission is consistent with an origin in photo-dissociation regions associated with star formation. We detect the S(0) 28.22um emission line in a few ULIRGs. Including this line in the model fits tends to lower the temperature by ~50-100K, resulting in a significant increase in the gas mass. The presence of a cooler component cannot be ruled out in the remainder of our sample, for which we do not detect the S(0) line. The measured S(7) 5.51um line fluxes in six ULIRGs implies ~3x10^6 solar-masses of hot (~1400K) H2. The warm gas mass is typically less than 1% of the cold gas mass derived from CO observations.Comment: Accepted ApJ 01 September 2006, v648n1 issue. 14 pages 12 figures IRAS 06361-6217 the f25/f60 ratio is 0.10 not 1.0

    The Structure of IR Luminous Galaxies at 100 Microns

    Get PDF
    We have observed twenty two galaxies at 100 microns with the Kuiper Airborne Observatory in order to determine the size of their FIR emitting regions. Most of these galaxies are luminous far-infrared sources, with L_FIR > 10^11 L_sun. This data constitutes the highest spatial resolution ever achieved on luminous galaxies in the far infrared. Our data includes direct measurements of the spatial structure of the sources, in which we look for departures from point source profiles. Additionally, comparison of our small beam 100 micron fluxes with the large beam IRAS fluxes shows how much flux falls beyond our detectors but within the IRAS beam. Several sources with point- like cores show evidence for such a net flux deficit. We clearly resolved six of these galaxies at 100 microns and have some evidence for extension in seven others. Those galaxies which we have resolved can have little of their 100 micron flux directly emitted by a point-like active galactic nucleus (AGN). Dust heated to ~40 K by recent bursts of non-nuclear star formation provides the best explanation for their extreme FIR luminosity. In a few cases, heating of an extended region by a compact central source is also a plausible option. Assuming the FIR emission we see is from dust, we also use the sizes we derive to find the dust temperatures and optical depths at 100 microns which we translate into an effective visual extinction through the galaxy. Our work shows that studies of the far infrared structure of luminous infrared galaxies is clearly within the capabilities of new generation far infrared instrumentation, such as SOFIA and SIRTF.Comment: 8 tables, 23 figure

    Epstein-Barr Virus as a Trigger of Autoimmune Liver Diseases

    Get PDF
    The pathogenesis of autoimmune diseases includes a combination of genetic factors and environmental exposures including infectious agents. Infectious triggers are commonly indicated as being involved in the induction of autoimmune disease, with Epstein-Barr virus (EBV) being implicated in several autoimmune disorders. EBV is appealing in the pathogenesis of autoimmune disease, due to its high prevalence worldwide, its persistency throughout life in the host's B lymphocytes, and its ability to alter the host's immune response and to inhibit apoptosis. However, the evidence in support of EBV in the pathogenesis varies among diseases. Autoimmune liver diseases (AiLDs), including autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), and primary sclerosing cholangitis (PSC), have a potential causative link with EBV. The data surrounding EBV and AiLD are scarce. The lack of evidence surrounding EBV in AiLD may also be reflective of the rarity of these conditions. EBV infection has also been linked to other autoimmune conditions, which are often found to be concomitant with AiLD. This paper will critically examine the literature surrounding the link between EBV infection and AiLD development. The current evidence is far from being conclusive of the theory of a link between EBV and AiLD

    The far-infrared/radio correlation and radio spectral index of galaxies in the SFR-M* plane up to z 2

    Get PDF
    [Abridged] We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate-stellar masse (i.e. SFR-M*) plane up to z 2. We start from a M*-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR-M* plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR-M*-z bin. The infrared luminosities of our SFR-M*-z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with Herschel. Their radio luminosities and radio spectral indices (i.e. alpha, where Snu nu^-alpha) are estimated using their stacked 1.4GHz and 610MHz flux densities from the VLA and GMRT, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields -GOODS-N/S, ECDFS, and COSMOS- covering a sky area of 2deg^2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M*>10^10Msun and 0<z<2.3. We find that alpha^1.4GHz_610MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR-M* plane (i.e. Delta_log(SSFR)_MS=log[SSFR(galaxy)/SSFR_MS(M*,z)]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that qFIR displays a moderate but statistically significant redshift evolution as qFIR(z)=(2.35+/-0.08)*(1+z)^(-0.12+/-0.04), consistent with some previous literature. Finally, we find no significant correlation between qFIR and Delta_log(SSFR)_MS, though a weak positive trend, as observed in one of our redshift bins, cannot be firmly ruled out using our dataset.Comment: Accepted for publication in A&A; 18 pages, 10 figure

    What Powers Ultra-luminous IRAS Galaxies?

    Get PDF
    We present an ISO SWS and ISOPHOT-S, mid-infrared spectroscopic survey of 15 ultra-luminous IRAS galaxies. We combine the survey results with a detailed case study, based on near-IR and mm imaging spectroscopy, of one of the sample galaxies (UGC 5101). We compare the near- and mid-IR characteristics of these ultra-luminous galaxies to ISO and literature data of thirty starburst and active galactic nuclei (AGN), template galaxies. We find that 1) 70-80% of the ultra-luminous IRAS galaxies in our sample are predominantly powered by recently formed massive stars. 20-30% are powered by a central AGN. These conclusions are based on a new infrared 'diagnostic diagram' involving the ratio of high to low excitation mid-IR emission lines on the one hand, and on the strength of the 7.7um PAH feature on the other hand. 2) at least half of the sources probably have simultaneously an active nucleus and starburst activity in a 1-2 kpc diameter circum-nuclear disk/ring. 3) the mid-infrared emitting regions are highly obscured. After correction for these extinctions, we estimate that the star forming regions in ULIRGs have ages between 10^7 and 10^8 years, similar to but somewhat larger than those found in lower luminosity starburst galaxies. 4) in the sample we have studied there is no obvious trend for the AGN component to dominate in the most compact, and thus most advanced mergers. Instead, at any given time during the merger evolution, the time dependent compression of the circum-nuclear interstellar gas, the accretion rate onto the central black hole and the associated radiation efficiency may determine whether star formation or AGN activity dominates the luminosity of the system.Comment: 63 pages postscript (ex. MS Word), 11 postscript and 2 gif figures, submitted to ApJ. See also http://www.mpe-garching.mpg.de/ISO/preprint/MPE-IR-97003.htm
    corecore