478 research outputs found

    The Water Uptake of Experimental Soft Lining Materials

    Get PDF
    PhDIn order to develop a successful soft lining material various factors have to be considered; physical strength, adhesion to the denture base ( or prosthetic) and the durability of the material's properties when in the mouth. It has been recognised that in order to fulfil these criteria the material must be stable and have a low water uptake from the aqueous environments of the mouth. In the dental field comparatively little work has focused on how soft lining materials behave in water where as water in polymers has received a considerable amount of interest, with many different types of behaviour being observed and explained. It has been realised by previous authors that the water uptake of elastomers is primarily driven by soluble impurities, these form solution droplets within the material. The nature of the growth is somewhat more debatable, with both Fickian and dual sorption kinetics being reported. Two basic types of materials were used in the study; silicone polymers and elastomer / methacrylate materials. Silicone polymers are characterised by a low water uptake and form the basis of perhaps the most successful soft lining material ('Molloplast B'). The elastomer / methacrylate materials were based on those developed by Parker (1982), Parker and Braden (1990) which showed considerable promise but suffered from an extensive protracted uptake. Water uptake at 370C in conjunction with the tensile strength were used to evaluate the materials produced as these simple tests enabled the behaviour of the material in service to estimated. Three different types of silicone polymers were used during the study classified by the curing mechanism (condensation, peroxide and hydrosilanised), various fillers and additives (such as calcium stearate) were incorporated into the materials and different uptakes observed. The condensation silicones demonstrated large weight losses (up to 20 wt%) in water which is attributed to hydrolytic instability of the siloxane bridge in the presence of an organo tin compound leading to a leaching of siloxane. The pure peroxide and hydrosilanised materials both demonstrated a low water uptake but when doped they form solution droplets in a similar way to that described in the literature. Other additives showed different behaviour with the formation of cracks within the silicone due to failure of the material around the droplets, the action of hydrophilic but insoluble fillers also promotes the uptake. The hydrosilanised silicone polymers showed considerable promise as soft lining materials with low water uptake and good tensile strength. 11 The elastomer / methacrylate materials were based initially on butadiene styrene copolymer and a higher methacrylate monomer which formed a gel this was then free radically cured. The water uptake of these materials was attributed to soluble separating agent added to the butadiene styrene (to prevent particle agglomeration) during the production of the powdered elastomer. The extent of the uptake could be controlled by improving the strength of the material but the overall uptake remained too high. When the material was placed in an osmotic solution (Na CI or glucose) the water uptake was significantly reduced and the behaviour could be described by a modified (for small strains) version of the Thomas and Muniandy (1987) theory for the growth of water droplets in a elastomer. In order to reduce the water uptake of the elastomer / methacrylate materials butadiene styrene copolymers without separating agent was used. The emulsion polymerised material contained soluble impurities from the polymerisation (i.e. soap)which acted to drive the water uptake. Solution polymerised butadiene styrene also demonstrated a high uptake but this is attributed to a clustering behaviour of carboxylic and hydroxyl groups which formed post production. Similar behaviour is also seen for a solution polymerised isoprene styrene elastomer. The role of crosslinking the material in restraining the growth of the droplets is also investigated with dramatic reductions in the uptake being observed as the crosslink density increased. The employment of a reinforcing silica filler proved more effective than simply using a dimethacrylate. Oxidation is another problem (characterised by an upturn in the absorption), although not observed in every case it was a problem for all of the unsaturated elastomers and was found to be promoted by ions present within saliva. Saturated butyl based (including chloro and bromo butyl) elastomers were used instead and did not show any tendency for oxidation but they still showed an uptake of approximately 3 to 4 wt%. Their stability however and reasonable strength makes them suitable for further development as soft lining materials. Theoretical considerations were investigated by HI NMR imaging with the formation of droplets being observed, the profiles seen indicating the absorption to be two stage rather than Fickian. The role of creep or stress relaxation is also identified as a mechanism for extending the uptake by reducing the restraining force. Further reasoning on all the data presented here concluded the role of chemical potential change associated with the water into the matrix or the droplets will determine the nature of the uptake observed

    Engineered Derivatives of Maltose-Binding Protein

    Get PDF

    The Use of Flexible Biomimetic Fins in Propulsion

    Get PDF
    This thesis documents a series of investigations exploring the role of stiffness profile in propulsion using pitching flexible fins. Stiffness profile is defined as the variation in local bending stiffness along the chord of a fin, from leading to trailing edge. An unmanned robotic submarine was created, using simple pitching flexible fins for propulsion. Its design and performance prompted a review of literature covering many aspects of oscillating fin propulsion, paying special attention to the studies of pitching flexible fins, of the type used in the submarine. In the body of previous work, fin stiffness profile was a consequence of the external shape profile of a fin; fins had not thus far been designed with stiffness profile specifically in mind. A hypothesis was proposed: “Use of a biomimetic fin stiffness profile can improve the effectiveness of a flexible oscillating fin, over that of a standard NACA designated fin shape.” Rectangular planform flexible fins of standard NACA 0012 design and 1:1 aspect ratio were tested alongside similar fins with a stiffness profile mimicking that of a pumpkinseed sunfish (Lepomis gibbosus). The fins were oscillated with a pitching-only sinusoidal motion over a range of frequencies and amplitudes, while torque, lateral force and static thrust were measured. Over the range of oscillation parameters tested, it was shown that the fin with a biomimetic stiffness profile offered a significant improvement in static thrust over a fin of similar dimensions with a standard NACA 0012 aerofoil shape, and produced thrust more consistently over each oscillation cycle. A comparison of different moulding materials showed that the improvement was due to the stiffness profile itself, and was not simply an effect of altering the overall stiffness of the fin, or changing its natural frequency. Within the range of stiffnesses and oscillation conditions tested, fins of the same stiffness profile were found to follow similar thrust-power curves, independently of their moulding material. Biomimetic fins were shown to produce between 10% and 25% more thrust per watt of mechanical input power.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Ethno- and Research History of the Lake Louise Field Station, Valdosta State University, Valdosta, GA

    Get PDF
    The history of the Lake Louise Field Station, from its 1951 purchase by George Leiby to its acquisition in 2009 by Valdosta State University, provides an interesting and varied look into the stewardship critical to teaching and research and the role played by the station in the development of the fields of paleoecology, paleotempestology and ethnohistory. During this 58-year period several individuals played critical roles in the development of this 76.9 hectare field station as a natural area for teaching and research. Notable among them were George and Louise Leiby who, working with Leo Lorenzo and Clyde Connell, set aside the station as a natural area for teaching and research. From the 1960s to the present, WA Watts, H Grissino-Mayer, J Tepper, D Hyatt, and J Pascarella and others have conducted research that has provided critical insight into the history and ecology of the area extending to 47,000 BP

    Preliminary Evaluation of the AFWA-NASA (ANSA) Blended Snow-Cover Product over the Lower Great Lakes Region

    Get PDF
    The Air Force Weather Agency (AFWA) - NASA (ANSA) blended-snow product utilizes EOS standard snow products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE. with SWE values calculated from snow depths reported at approx.1500 National Climatic Data Center (NCDC) coop stations in the Lower Great Lakes basin. Our preliminary results show that conversion of snow depth to SWE is very sensitive to the choice of snow density (we used either 0.2 or 03 as conversion factors). We found overall better agreement between the ANSA-derived SWE and the co-op station data when we use a snow density of 0.3 to convert the snow depths to SWE. In addition, we show that the ANSA underestimates SWE in densely-forested areas, using January and February 2008 ANSA and co-op data. Furthermore, apparent large SWE changes from one day to the next may be caused by thaw-re-freeze events, and do not always represent a real change in SWE. In the near future we will continue the analysis in the 2006-07 and 2007-08 snow seasons

    Effect of chronic stress on running wheel activity in mice

    Get PDF
    Acute and chronic stress have been reported to have differing effects on physical activity in rodents, but no study has examined a chronic stress protocol that incorporates stressors often experienced by rodents throughout a day. To examine this, the effects of the Unpredict- able Chronic Mild Stress (UCMS) protocol on voluntary running wheel activity at multiple time points, and/or in response to acute removal of chronic stress was determined. Twenty male Balb/c mice were given access and accustomed to running wheels for 4 weeks, after which they were randomized into 2 groups; exercise (EX, n = 10) and exercise with chronic stress using a modified UCMS protocol for 7 hours/day (8:00 a.m.-3:00p.m.), 5 days/week for 8 weeks (EXS, n = 10). All mice were given access to running wheels from approximately 3:30 p.m. to 7:30 a.m. during the weekday, however during weekends mice had full-time access to running wheels (a time period of no stress for the EXS group). Daily wheel running distance and time were recorded. The average running distance, running time, and work each week- day was significantly lower in EXS compared to EX mice, however, the largest effect was seen during week one. Voluntary wheel running deceased in all mice with increasing age; the pattern of decline appeared to be similar between groups. During the weekend (when no stress was applied), EXS maintained higher distance compared to EX, as well as higher daily distance, time, and work compared to their weekday values. These results indicate that mild chronic stress reduces total spontaneous wheel running in mice during the first week of the daily stress induction and maintains this reduced level for up to 8 consecutive weeks. How- ever, following five days of UCMS, voluntary running wheel activity rebounds within 2–3 days

    The fundamental equation of eddy covariance and its application in flux measurements

    Get PDF
    A fundamental equation of eddy covariance (FQEC) is derived that allows the net ecosystem exchange (NEE) N̅s of a specified atmospheric constituent s to be measured with the constraint of conservation of any other atmospheric constituent (e.g. N2, argon, or dry air). It is shown that if the condition │N̅s│ ˃˃ │X̅s│ │N̅co2│is true, the conservation of mass can be applied with the assumption of no net ecosystem source or sink of dry air and the FQEC is reduced to the following equation and its approximation for horizontally homogeneous mass fluxes: N̅s = c̅dw’X’s│h + ∫h0 c̅d(z) ∂Xs/∂t dz + ∫h0 [X̅s (z)- X̅s (h)] ∂̅c̅d̅/∂t dz = c̅d̅(h) {w̅’X̅’s│h + ∫h0 ∂Xs/∂t dz}. Here w is vertical velocity, c molar density, t time, h eddy flux measurement height, z vertical distance and Xs= cs/cd molar mixing ratio relative to dry air. Subscripts s, d and CO2 are for the specified constituent, dry air and carbon dioxide, respectively. Primes and overbars refer to turbulent fluctuations and time averages, respectively. This equation and its approximation are derived for non-steady state conditions that build on the steady-state theory of Webb, Pearman and Leuning (WPL; Webb et al., 1980. Quart. J. R. Meteorol. Soc. 106, 85–100), theory that is widely used to calculate the eddy fluxes of CO2 and other trace gases. The original WPL constraint of no vertical flux of dry air across the EC measurement plane, which is valid only for steady-state conditions, is replaced with the requirement of no net ecosystem source or sink of dry air for non-steady state conditions. This replacement does not affect the ‘eddy flux’ term c̅d̅w̅’X̅’s s but requires the change in storage to be calculated as the ‘effective change in storage’ as follows: ∫h0 ∂̅c̅s̅/ ∂̅t̅ dz – X̅s(h) ∫h0 ∂̅c̅d̅/∂t dz = ∫h0 c̅d̅ (z) - ∂Xs/∂t dz + ∫h0 [X̅s (z)- X̅s (h)] ∂̅c̅d̅/∂t dz= c̅d (h) ∫h0 ∂Xs/∂t dz. Without doing so, significant diurnal and seasonal biases may occur. We demonstrate that the effective change in storage can be estimated accurately with a properly designed profile of mixing ratio measurements made at multiple heights. However further simplification by using a single measurement at the EC instrumentation height is shown to produce substantial biases. It is emphasized that an adequately designed profile system for measuring the effective change in storage in proper units is as important as the eddy flux term for determining NEE

    The fundamental equation of eddy covariance and its application in flux measurements

    Get PDF
    A fundamental equation of eddy covariance (FQEC) is derived that allows the net ecosystem exchange (NEE) N̅s of a specified atmospheric constituent s to be measured with the constraint of conservation of any other atmospheric constituent (e.g. N2, argon, or dry air). It is shown that if the condition │N̅s│ ˃˃ │X̅s│ │N̅co2│is true, the conservation of mass can be applied with the assumption of no net ecosystem source or sink of dry air and the FQEC is reduced to the following equation and its approximation for horizontally homogeneous mass fluxes: N̅s = c̅dw’X’s│h + ∫h0 c̅d(z) ∂Xs/∂t dz + ∫h0 [X̅s (z)- X̅s (h)] ∂̅c̅d̅/∂t dz = c̅d̅(h) {w̅’X̅’s│h + ∫h0 ∂Xs/∂t dz}. Here w is vertical velocity, c molar density, t time, h eddy flux measurement height, z vertical distance and Xs= cs/cd molar mixing ratio relative to dry air. Subscripts s, d and CO2 are for the specified constituent, dry air and carbon dioxide, respectively. Primes and overbars refer to turbulent fluctuations and time averages, respectively. This equation and its approximation are derived for non-steady state conditions that build on the steady-state theory of Webb, Pearman and Leuning (WPL; Webb et al., 1980. Quart. J. R. Meteorol. Soc. 106, 85–100), theory that is widely used to calculate the eddy fluxes of CO2 and other trace gases. The original WPL constraint of no vertical flux of dry air across the EC measurement plane, which is valid only for steady-state conditions, is replaced with the requirement of no net ecosystem source or sink of dry air for non-steady state conditions. This replacement does not affect the ‘eddy flux’ term c̅d̅w̅’X̅’s s but requires the change in storage to be calculated as the ‘effective change in storage’ as follows: ∫h0 ∂̅c̅s̅/ ∂̅t̅ dz – X̅s(h) ∫h0 ∂̅c̅d̅/∂t dz = ∫h0 c̅d̅ (z) - ∂Xs/∂t dz + ∫h0 [X̅s (z)- X̅s (h)] ∂̅c̅d̅/∂t dz= c̅d (h) ∫h0 ∂Xs/∂t dz. Without doing so, significant diurnal and seasonal biases may occur. We demonstrate that the effective change in storage can be estimated accurately with a properly designed profile of mixing ratio measurements made at multiple heights. However further simplification by using a single measurement at the EC instrumentation height is shown to produce substantial biases. It is emphasized that an adequately designed profile system for measuring the effective change in storage in proper units is as important as the eddy flux term for determining NEE

    Age-Dependence of Femoral Strength in White Women and Men

    Get PDF
    Although age-related variations in areal bone mineral density (aBMD) and the prevalence of osteoporosis have been well characterized, there is a paucity of data on femoral strength in the population. Addressing this issue, we used finite-element analysis of quantitative computed tomographic scans to assess femoral strength in an age-stratified cohort of 362 women and 317 men, aged 21 to 89 years, randomly sampled from the population of Rochester, MN, and compared femoral strength with femoral neck aBMD. Percent reductions over adulthood were much greater for femoral strength (55% in women, 39% in men) than for femoral neck aBMD (26% in women, 21% in men), an effect that was accentuated in women. Notable declines in strength started in the mid-40s for women and one decade later for men. At advanced age, most of the strength deficit for women compared with men was a result of this decade-earlier onset of strength loss for women, this factor being more important than sex-related differences in peak bone strength and annual rates of bone loss. For both sexes, the prevalence of “low femoral strength” (<3000 N) was much higher than the prevalence of osteoporosis (femoral neck aBMD T-score of −2.5 or less). We conclude that age-related declines in femoral strength are much greater than suggested by age-related declines in femoral neck aBMD. Further, far more of the elderly may be at high risk of hip fracture because of low femoral strength than previously assumed based on the traditional classification of osteoporosis. © 2010 American Society for Bone and Mineral Research
    corecore