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Abstract


This thesis documents a series of investigations exploring the role of stiffness profile in 

propulsion using pitching flexible fins. Stiffness profile is defined as the variation in local 

bending stiffness along the chord of a fin, from leading to trailing edge. 

An unmanned robotic submarine was created, using simple pitching flexible fins for propul

sion. Its design and performance prompted a review of literature covering many aspects of 

oscillating fin propulsion, paying special attention to the studies of pitching flexible fins, of the 

type used in the submarine. In the body of previous work, fin stiffness profile was a conse

quence of the external shape profile of a fin; fins had not thus far been designed with stiffness 

profile specifically in mind. A hypothesis was proposed: “Use of a biomimetic fin stiffness 

profile can improve the effectiveness of a flexible oscillating fin, over that of a standard NACA 

designated fin shape.” 

Rectangular planform flexible fins of standard NACA 0012 design and 1:1 aspect ratio were 

tested alongside similar fins with a stiffness profile mimicking that of a pumpkinseed sunfish 

(Lepomis gibbosus). The fins were oscillated with a pitching-only sinusoidal motion over a 

range of frequencies and amplitudes, while torque, lateral force and static thrust were 

measured. Over the range of oscillation parameters tested, it was shown that the fin with a 

biomimetic stiffness profile offered a significant improvement in static thrust over a fin of 

similar dimensions with a standard NACA 0012 aerofoil shape, and produced thrust more 

consistently over each oscillation cycle. 

A comparison of different moulding materials showed that the improvement was due to the 

stiffness profile itself, and was not simply an effect of altering the overall stiffness of the fin, or 

changing its natural frequency. Within the range of stiffnesses and oscillation conditions 

tested, fins of the same stiffness profile were found to follow similar thrust-power curves, 

independently of their moulding material. Biomimetic fins were shown to produce between 

10% and 25% more thrust per watt of mechanical input power. 
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Chapter One


Introduction


1.1 Biomimetics 

Biomimetics is the application of biologically inspired methods and principles to engineering 

and technology. The term is often used interchangeably with ‘bioinspiration’, ‘biomimicry’, and 

‘bionics’, all of which have similar meanings. Engineers and scientists have looked to nature 

for inspiration since long before the term was coined, but in recent years, cross-disciplinary 

research has become more prevalent in many areas, and the search for naturally inspired 

solutions to specific problems has grown more deliberate. 

There are many well-known examples of biomimetic solutions to engineering problems. Cats’ 

eyes; road markers designed to reflect the headlights of approaching cars are based on the 

design of their biological counterparts. Velcro, the reusable fastening material, was inspired by 

the mechanism by which burrs from plants disperse themselves by sticking to passing animals. 

Lotus plants have a water-repellent surface microstructure which helps them to keep clean; as 

water droplets roll over their leaves, dirt particles are carried away. The ‘Lotus effect’ has been 

exploited by chemical engineers to create paints that exhibit the same water and dirt repellent 

properties. These applications highlight the relevance and value of the biomimetic approach 

to all areas of engineering and design. 

1.2 Flexible Fin Propulsion 

Nature displays many diverse and excellent means of underwater propulsion. Different species 

display a multitude of propulsion and manoeuvring methods appropriate for their environ

ments. The combinations of agility, efficiency and simplicity they achieve are far beyond the 

best attempts of humans to emulate them, so they are a valuable source of information and 

inspiration for engineers seeking to design the propulsion systems of the future. 

While conventional rotary propellers are widely used and very effective in many applications, 

there are areas in which flexible fin propulsion can prove superior. 

Propellers rotating at high speed can cause cavitation, and in doing so, generate noise, and 

accumulate damage. When a propeller blade passes through water at high speed, the pressure 

behind it can be low enough to form small vacuum pockets in the water. When normal 

pressure is restored, these pockets implode, and the energy that went into creating them is 
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released in a very small space, creating a shockwave. When cavitation occurs near a propeller 

surface, it can cause corrosion and wear, shortening the useful life of the propeller. The 

gentler motion of an oscillating fin means it does not create any areas of extreme low pressure 

in which cavitation is likely to occur. 

Propellers leave a large amount of turbulent fluid in their wake as they move, as they impart 

kinetic energy to the water not only in the direction of travel, but also in a helical column 

behind the propeller blades. Ultimately, energy spent creating this spinning helix is wasted, as 

the movement dissipates into the surrounding water. Highly efficient fins, such as those of a 

tuna, leave a wake in which almost all the momentum is in the opposite direction to the 

motion of the fish (Lauder, 2000, Triantafyllou and Triantafyllou, 1995). This means that the 

energy transferred to the water to create the vortices behind the fish has been spent very 

efficiently for the generation of thrust. 

Another advantage of finned propulsion is that fins do not suffer from many of the risks that 

conventional propellers do. Propellers are prone to damage from objects with which they 

collide, they can become tangled in weeds, and are dangerous to nearby people, animals and 

objects unless properly guarded. The gentler motion of flexible fins means they suffer no such 

drawbacks. 

1.2.1 Non­Propulsive Applications 

The ability of flexible fins to move liquids can be exploited in applications other than water 

vehicle propulsion. Pumping and liquid handling machinery is another situation where their 

properties can be put to good use. Their simplicity and minimization of moving parts will be 

advantageous in industrial applications. Their ability to operate within heterogeneous 

substances and neither to damage nor be damaged by them is another positive quality. 

1.3 Outline of Chapters 

This thesis grew out of a general study of finned propulsion on the platform of a robotic 

submarine. By way of a series of investigations, it became focussed on a specific aspect of fin 

propulsion: the use of biomimetic stiffness profiles in improving the thrust and efficiency of 

finned propulsion. In its structure, this thesis follows the path of research, experiments and 

discoveries that lead from the initial submarine project to the conclusions of the biomimetic 

fin experiments. The order in which events are presented is loosely chronological, although 

some events are grouped together to aid clarity. The chapters are as follows: 
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Chapter One: Introduction 

This chapter provides context to the following chapters, briefly discussing the field of biomi

metics, and the reasons for interest in fin-based propulsion. It introduces some of the termi

nology and conventions used throughout the rest of the thesis. 

Chapter Two: Background and Literature Survey 

Chapter Two reviews a selection of literature from the fields of fish locomotion, hydrodynam

ics, and more specifically, oscillating fin research, in order to lay the foundations of the work in 

the following chapters. It establishes that the stiffness profile of fins is a compelling area for 

further study, and introduces a hypothesis to be put to the test in subsequent chapters: that 

use of a biomimetic fin stiffness profile can improve the effectiveness of a flexible oscillating 

fin, over a standard NACA (National Advisory Committee for Aeronautics) designated fin 

shape. 

Chapter Three: Preliminary Investigations 

Chapter Three describes several brief investigations that were carried out before the com

mencement of the work described in the main experimental chapters. Investigations included 

the dissection of a dogfish fin, and experiments on the materials used to mould flexible fins in 

the subsequent chapters. 

Chapter Four: Development of Experimental Methods 

Chapter Four covers the materials and methods used for the experiments described in 

subsequent chapters, development of the fin moulding technique, fin actuation method, and 

force measurement instrumentation are discussed in some detail, together with the decisions 

made about how to carry out experiments, and the methods of data analysis used. 

Chapter Five: NACA vs. Biomimetic Fin Experiments 

Chapter Five is the first chapter of experimental data, which describes tests on biomimetic and 

NACA-derived fins, at a range of frequencies and amplitudes. The results appeared to show a 

considerable advantage to the biomimetic design, but the data gathered was not enough to 

attribute it to the fin stiffness profile alone, necessitating a second round of experiments. 

Chapter Six: Fin Material Experiments 

Chapter Six discusses improvements made to the experimental equipment and methods after 

the first round of experiments, and describes the next set of experiments to be carried out. 

These experiments show similar findings to the previous ones, but the extra data gathered was 

used to confirm that the improvement in thrust-to-power ratio seen in the biomimetic fin 
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design was attributable to its stiffness profile, and is not being caused by another, unforeseen 

property of the fin design. 

Chapter Seven: Summary of Conclusions and Future Work 

Chapter Seven discusses the potential avenues for further study that have resulted from the 

work presented in this thesis. 

References 

A comprehensive list of all journals, books, reports and other literature referred to in all 

sections of this thesis. 

Appendices 

The Appendices contain supplementary details, included as an aid to understanding of the 

main body of the thesis. 

1.4 Terminology and Conventions 

Throughout the thesis, care is taken to explain engineering terms and concepts to readers 

with a background in biology, who may be less familiar with them than those from a mechani

cal engineering background. Similarly, ideas from the biological sciences are also introduced 

with a diverse readership in mind. 

This section addresses some of the ambiguities that can arise in discussion of flexible fins, 

aerodynamics, hydrodynamics, and propulsion, and lays down some conventions that are 

adhered to throughout the thesis. 

1.4.1 Nomenclature 

To avoid confusion it is necessary to define the terms commonly used to describe properties 

of aerofoils, hydrofoils, and experiments involving them. The term ‘aerofoil’ in this report refers 

not only to fins designed to operate in air, but also to the geometric shape of a foil, such as in 

the NACA standard (Jacobs, et al., 1933). ‘Foil’ is used in this report to describe an aerofoil 

shape of rectangular planform and constant section, and unless otherwise specified, refers to 

one that is rigid, not flexible. ‘Fin’ is used of other types of foil, whether flexible, or more 

elaborate in shape and design. 

Chord and span are the basic size parameters of a foil, as shown in Figure 1. However, since 

this thesis deal with fins of both engineering and biomimetic origin, in a vertical orientation, 

the term ‘length’ is sometimes used in place of ‘chord’, and ‘height’ instead of ‘span’, as would 

be the case when describing a fish. 
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Span 

Chord 

Height 

Length 

Figure 1: Foil dimensions. 

Previously published works dealing with oscillating fins in the fields of aerodynamics and 

hydrodynamics usually test fins with their span in a horizontal orientation. The experiments in 

this thesis have been performed on vertically orientated fins, for reasons discussed in Section 

4.3.2 (page 72). According to conventions of marine dynamics, the correct terms for the 

movements of an oscillating foil in this orientation are yaw (rotation) and sway (translation). 

However for clarity, the terminology used in this thesis is in common with the previous 

literature. Linear movement perpendicular to the chord and span of the fin is often referred to 

as ‘plunge’ or ‘heave’; the latter term is used in this thesis. Angular rotation about an axis 

parallel to the span is referred to as ‘pitch’. These motions are shown diagrammatically in 

Figure 2. 

a) Pitching b) Heaving c) Pitching and heaving 

Figure 2: Types of fin oscillation. 

1.4.2 Stiffness Terminology 

Bending stiffness is defined as EI, from engineering beam theory, where E is Young’s modulus 

and I is the beam’s second moment of area (Roark, 1943). Biological studies often refer to EI 

as flexural stiffness, a term used in this thesis when describing biological data. 

Another term used frequently in this thesis is ‘stiffness profile’. This refers to the way a fin’s 

bending stiffness varies from leading to trailing edge. In a fin made from a homogenous 

material, stiffness profile and shape are directly related. However, internal stiffening members 

can be used to modify the stiffness profile independently from its external shape profile. 

While the term ‘hardness’ can have several well-defined meanings within the fields of engi

neering and biology, in this thesis the terms ‘soft’ and ‘hard’ are used to describe the resins 
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from which flexible fins are made. The terms refer to the stiffness of a material, ultimately 

defined by its Young’s modulus. 

1.4.3 Fish Anatomy 

Figure 3 shows the terms used to describe anatomical locations in fish: 

Dorsal 

Ventral 
Posterior 

Anterior 

Left lateral 

Right lateral 

Figure 3: Anatomical terms of location in fish. 

1.4.4 Fin Axes and Loads 

The convention shown in Figure 4 is used to describe the axes in which fins operate. If the fin 

is operating in flowing water, the flow is in the positive x direction. Heaving motion occurs in 

the y direction, and pitching about the z axis. 

x 

z 

y 

Figure 4: Axes relating to a foil. 

Because the fin has a plane of symmetry parallel to the x­y plane, forces generated by any part 

of the fin that are not parallel to the plane of symmetry will be counteracted by forces from the 

opposite side of the plane. Therefore the overall forces generated by the fin can be simplified 

to a force vector and a torque, acting at a point halfway along the span of the fin, on the z 

axis. In this thesis, the term 'thrust', when used of a fin, refers the component of the overall 

force vector acting in the negative x direction, and can be given an average or instantaneous 
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value. 'Lateral force' refers to the y component, and refers to a mean absolute value, unless 

declared otherwise in the text. ‘Torque’ is measured about the z axis unless otherwise stated. 
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Chapter Two


Background and Literature Survey


2.1 Introduction 

The motivation for much of the work documented in this thesis began with the creation of a 

fin-propelled robotic submarine. Details of the submarine’s conception, design and testing can 

be found in Appendix A. Constraints of time and budget meant the original submarine’s fins 

were designed with little reference to existing designs and literature. For this reason, it was 

decided that an appropriate next step would be to undertake a thorough literature survey, in 

an effort to identify areas with scope for further research, within the field of flexible fin design. 

This research would then feed back into the design process to create a more effective fin 

propulsion system for use in future submarine projects. 

The purpose of this chapter is to give an overview of the current state of research in areas 

related to oscillating fin propulsion. It also introduces many concepts and methods from areas 

of both biological and engineering sciences, in terms familiar to both disciplines. Attention is 

paid to methods of describing and evaluating fin performance, in order to lay the foundations 

to the experiments documented in later chapters. 

There is a particular focus on flexible oscillating fins, and the chapter concludes by establish

ing a hypothesis about the role of stiffness profile in flexible fin propulsion, to be tested 

experimentally. 

2.2 Hydrodynamic Theory 

A great deal of work has been carried out on foils and wings operating in both air and water. 

Theories have been established about many aspects of foil dynamics, and it is important to 

take these into account when researching more novel areas within the field. The following 

sections summarise areas of hydrodynamic and aerodynamic theory from previous work, that 

are relevant to this thesis. Occasionally, more than one definition exists for a particular term. 

These cases can cause confusion, as the most appropriate definition depends on the context 

in which the term is being used. The terms are still helpful, provided that conventions are 

applied correctly and consistently. 
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2.2.1 Thrust 

2.2.1.1 Definition 

In most papers pertaining to fin propulsion, thrust refers to the useful forward force generated 

by a propulsor. It is usually measured as the mean force generated over an entire fin cycle, in 

the direction of its centre of oscillation. This is distinct from instantaneous thrust, which varies 

over each fin cycle. In this thesis, where the term ‘thrust’ is used on its own, it refers to mean 

thrust per fin cycle, as in the following definition (Hover, et al., 2004): 

F x = 
1 

∫ 
T 
Fx ( )t dt (1) 

T 0 

Where Fx is the instantaneous force in the x (forward) direction. The instantaneous thrust is 

integrated with respect to time (t), and divided by the time taken for a full oscillation cycle (T). 

Thrust generated under conditions of zero flow can be termed ‘static’ thrust. In the field of 

aerodynamics, static thrust is not regarded as a useful metric of propulsion performance, since 

aircraft propellers are designed to work in high stream velocities. In hydrodynamic propulsion, 

however, propulsion units are often required to generate thrust in zero or even negative flow 

conditions, so static thrust is a helpful term. Static thrust is also known as ‘bollard thrust’ in 

marine engineering. 

In the case of moving propulsion devices, thrust power is a useful way of measuring a fin’s 

output. It is simply the thrust generated multiplied by its forward velocity (U). 

P = F xU (2) 

2.2.1.2 Lift and drag­based thrust 

‘Drag-based’ and ‘lift-based’ are terms used to describe the generation of thrust by different 

means. Drag-based thrust generation results from a body or appendage pushing against a fluid 

such that the drag acting on it propels the parent body in the intended direction; for example, 

as an oar propels a rowing boat. It is suited to low-speed manoeuvring, because thrust can 

only be generated if the speed of the object generating the drag is less than the speed of the 

fluid flowing past the body. Lift-based propulsion uses the forward component of the lift force 

that is generated when fin moves through the fluid. It does not suffer the same drawbacks at 

high speeds as drag-based propulsion. 

Studies of the propulsive efficiency (see Section 2.2.3.1) of mammals employing different 

modes of swimming have found many lift-based swimmers operate in the region of 80% 
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propulsive efficiency, while drag-based, ‘paddlers’, much less well adapted to swimming, have 

efficiencies below 30% (Fish, 1996). 

2.2.2 Nondimensional Parameters 

Many of the previous studies of fin propulsion use nondimensional parameters to describe the 

motion of a fin (Triantafyllou, et al., 2004). The following are particularly relevant to the 

research discussed in this thesis: 

2.2.2.1 Reynolds number 

The Reynolds number can be used to determine whether different experiments are dynami

cally similar, and its magnitude is a guide as to whether flow around a body will be laminar or 

turbulent. It is defined as: 

ρv L v L 
Re = s = s 

(3) 
µ ν 

Where ρ is the fluid density, vs is the flow velocity, L is a characteristic length of the body 

under observation (usually the chord when dealing with aerofoil shapes), and µ is the dynamic 

fluid viscosity. ρ and µ can be combined into ν, the kinematic fluid viscosity. 

2.2.2.2 Aspect ratio 

Aspect Ratio (AR) is the span of a foil (s) divided by its chord (c). For non-rectangular shapes, 

average values are used, or the square of the span is divided by the wing area (A), to the same 

effect. 

2 s s 
(4) AR = = 

c A 

Aspect ratio is useful for making generalised comparisons between fins using a single number, 

but of course overlooks many of the geometric subtleties of a fin’s shape. 

2.2.2.3 Thrust coefficient 

A thrust coefficient is a dimensionless number describing how effectively thrust is produced by 

a propulsion device. For a propeller, it can be expressed in a number of ways, the simplest of 

which is the following (Carlton, 1994): 

F 
C = x (5) 

TPS 2 4ρn D 
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Where CTPS is the propeller’s static thrust coefficient, Fx is the thrust generated by the 

propeller, ρ is the fluid density, n is the number of revolutions the propeller makes per second, 

and D the propeller diameter. Other definitions equate to the same value with a different 

multiplication factor. 

Other definitions take the flow speed (U) into account, such as: 

F 
CTP = x 

2 
(6) 

ρU A 

The definition above can be adapted to describe the thrust coefficient of an oscillating fin. The 

following equation takes the properties of a fin into account to produce a dimensionless 

number describing the ability of a fin to generate thrust at a given stream velocity (Hover, et 

al., 2004). 

2F 
CT = 

2 
x (7) 

ρU cs 

Where CT is the thrust coefficient, Fx is the forward thrust of the fin, the average of which is 

taken over an integer number of cycles, U is the forward velocity of the fin, and c and s the 

chord and span respectively. The equation applies to fins of rectangular profile, but different 

characteristic dimensions could be chosen to apply it to other shapes. 

2.2.2.4 Internal Froude number 

The Froude number (Fr), in its simplest form, is the ratio of a characteristic velocity (V) of an 

object to the wave propagation velocity (cwave) in the liquid it inhabits: 

V 
Fr = (8) 

c wave 

The propagation velocity of a wave of length L is can be calculated as: 

cwave = gL (9) 

The time period (T) for a pendulum swinging at its natural frequency under gravity (g) is 

defined as: 

T = 2π L (10) g 

Equations (8) - (10) can be combined to cancel the gravity term. The resulting non-

dimensional number is known as the internal Froude number. 
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V 
 L  V T V 1 T 

Fr = = = gL  g  L 
= 

2π
× 

L 2π L (11) 
V 

Comparison of the internal Froude numbers of many animals and man-made craft reveals a 

tendency towards Fr = 1 in both nature and engineering. A review of biorobotic undersea 

vehicles (Bandyopadhyay, 2005), observes that most animals swim within the range of one 

body length per oscillation cycle. However the wide spread of data around Fr = 1 condition in 

the same paper suggests that the correlation is only an approximate one. 

2.2.2.5 Strouhal number 

The Strouhal number, or non-dimensional frequency, is another very important parameter 

describing the motion of a foil, and is defined: 

Af 
St = (12) 

U 

Where A is the width of the foil’s wake, f is the oscillation frequency, and U is the average 

forward velocity. In practice, the Figure 5 shows the difference between low and high Strouhal 

number wake patterns. 

a) 

b) 

Figure 5: a) Low and b) high Strouhal number wakes. 

For simplicity, the wake width is often approximated as double the heave amplitude of a 

pitching and heaving foil, illustrated in Figure 6. 

A 

Figure 6: Strouhal number is equal to the ratio of these two dimensions. 

The Strouhal number can be perhaps more usefully described as the ratio of the wake width 

(A) to the oscillation wavelength (λ). 
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A 
St = (13) 

λ 

A fin oscillating in a stationary fluid can be described as having an infinite Strouhal number. 

2.2.2.6 Heave to chord ratio 

Another important characteristic of oscillating foils (Anderson, et al., 1998) is the ratio of the 

amplitude of the heaving motion (h) to the chord length (c) of the foil, defined here as Rhc. 

h 
R = (14) hc 

c 

2.2.2.7 Reduced frequency 

The reduced frequency of an oscillating foil is another important variable governing fin 

performance (Koochesfahani, 1989) It could also be called the ‘wavenumber’ of an oscillating 

fin system, since it describes the number of fin oscillations in a given length. It is calculated as 

follows: 

ωc 2πfc πfc 
k = = = (15) 

2U 2U U 

Where f is the frequency of oscillation in Hz, ω the angular frequency, c is the chord length, 

and U is the average forward velocity. It can be helpful to consider reduced frequency in terms 

of the chord length (c) and oscillation wavelength (λ): 

πc 
k = (16) 

λ 

It is proportional to the ratio of chord length to wavelength, or alternatively to the number of 

oscillations that occur while the fin travels a chord length (Figure 7). 

c 

Figure 7: Two dimensions that that define reduced frequency. 

2.2.2.8 Maximum unsteady angle of attack 

The unsteady angle of attack (often referred to simply as the angle of attack or instantaneous 

angle of attack) is the angle between a foil’s instantaneous direction of travel and its chord. It 
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takes into account both pitching and the heaving motion of a foil as it moves through the 

water, as in Figure 8. 

max 

Figure 8: Maximum unsteady angle of attack. 

The maximum angle attack of a flapping foil can greatly exceed that of a fixed foil in a steady 

flow. Fixed wings usually begin to stall at attack angles of around 15°, but oscillating foils can 

achieve much higher angles (Triantafyllou and Triantafyllou, 1995). 

At low Strouhal numbers, the unsteady angle of attack is approximately equal to the pitching 

angle. The difference between the two becomes more pronounced as Strouhal number 

increases, because the effect of the heaving motion as the foil moves through the fluid 

becomes more significant. 

2.2.3 Measuring Efficiency 

There are several ways of quantifying the efficiency of fins and propellers. Efficiency terms 

often have more than one definition, depending on the context of their use, and the type of 

propulsion device to which they are being applied. The following terms have all been used in 

previous literature in the forms shown below, and are used where relevant in this thesis. 

2.2.3.1 Propulsive efficiency 

The propulsive efficiency of a fin or propeller (η) can be described as the ratio between input 

power (PI) and useful thrust power, which is equal to the product of the mean thrust (Fx) and 

free stream velocity (U), as follows: 

F U xη = (17) 
PI 

2.2.3.2 Bollard efficiency 

‘Bollard pull’ is a naval term describing the maximum static thrust that can be generated by a 

ship at full power. It is measured by securing the ship to an immovable object (such as a 

bollard). This empirical method of determining a ship’s power has descended into hydrody

namic theory in the form of ‘bollard efficiency’ – a term that describes the ability of a propul

sion device to produce thrust at zero velocity. 
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Actuator disk theory reduces the complex fluid-structure interactions of a rotating propeller to 

a simplified model, in which a two-dimensional disk induces a given velocity to the fluid 

passing through it. Calculations can then be carried out concerning the conservation of mass 

flow, momentum, and energy, through the system, and equations derived to represent the 

theoretical ideal performance of a propeller (Horlock, 1978). One such equation represents 

the ideal static thrust (TI) that can be achieved by a propeller of a given area: 

3 2
2 inI APT ρ= (18)


Where ρ is the fluid density, A is the propeller’s cross-sectional area, and Pin is the power 

consumed. 

‘Bollard efficiency’ is another term of naval origin, used of propellers generating static thrust. It 

is not strictly a measure of efficiency, since efficiency is only a meaningful term where work is 

being done, and the generation of thrust without movement implies no useful work. It is, 

however, a practical measure of the efficacy of the propeller. It is defined as the ratio of thrust 

generated by the propeller, to the ideal thrust generated by a theoretical actuator disk of the 

same area, with the same power: 

F F x 

3 

xη = = B (19) 
T 2 

I 2ρAPin 

Where ηB is the bollard efficiency, Fx is the forward thrust, and TI the ideal static thrust, as 

above. In this thesis, unless otherwise stated, values for power describe mechanical power 

supplied, excluding motor and drivetrain losses. 

An equivalent method for calculating static efficiency of fins has been proposed, which 

assumes A to be the area swept by the trailing edge of the fin in the y­z plane (Kemp and 

Hobson, 2001). In situations where A cannot easily be measured, it can be approximated by 

the area that would be swept by the fin if it were rigid: 

A = 2H (1− xp )C sinα (20) 

Where H is the height of the fin, C is its chord length, xp is the location of the fin’s pivot point 

as a fraction of its chord (0.1 in all the fins tested in this thesis), and α is the centre-to-peak 

amplitude of oscillation. 

2.2.3.3 Thrust­to­power ratio 

The ratio of thrust output to power supplied cannot be described as a measure of efficiency, 

for the same reasons as those stated above. It is, however, a useful term for evaluating static 
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thrust performance (Kemp, et al., 2003). It is defined as the ratio of mean static thrust 

generated by a fin, to the power supplied to it, and is measured in NW-1 . 

F xR = (21) 
TP 

P 

2.2.4 The Reverse Kármán Street 

Under certain flow conditions of flow speed and viscosity, a bluff body placed in a moving flow 

of fluid will leave a pattern in its wake known as a Kármán vortex street (Kármán and Burgess, 

1935). The incongruity between the stationary fluid behind the bluff body and that flowing 

past it causes eddies to form between the two. As the eddies are carried further from the body, 

they increase in size, but diminish in vorticity, until the kinetic energy they contain is dissi

pated by the viscosity of the fluid (Figure 9). 

Figure 9: Kármán vortex street. 

Fins produce thrust by inducing a jet flow in the opposite direction to the resultant thrust. 

This jet takes the form of a reverse Kármán street: a moving column of water flowing away 

from the fin, with a staggered row of vortices down either side (Figure 10). 

Figure 10: Reverse Kármán vortex street. 

Fishes demonstrate more complex control over the shedding of vortices than the examples 

above describe. A study of mullet (Chelon labrosus) looked at the flow patterns past the fish, 

and at the relative contributions of the body and the tail to thrust production (Ahlborn, et al., 

1991). It revealed that vortices were being created by the frontal region of the body, and when 

they reached the tail, the tail’s movement passed through each vortex, reducing its size and 
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extracting some of the energy embodied within it. This behaviour both reduced the wake of 

the fish, and increased its efficiency, since less energy was left behind in the vortices. 

2.2.5 Types of Instability 

The flow of water past an oscillating fin can be classified as unstable steady flow. Disturbances 

in such a flow can be divided into two distinct categories: 

Absolute instability: Where a perturbation develops close to a body that causes it, and stays 

close to the body, not being carried away in the wake. 

Convective instability: Where the body causes a perturbation that is then carried down

stream in the wake, away from the body. 

The vortices that compose a reverse Kármán street, and therefore govern the effectiveness of a 

fin in propulsion, are convective, because they leave the trailing edge of the fin, and disperse 

into its wake. 

2.2.6 Optimal Strouhal Number 

Experiments carried out at the Massachusetts Institute of Technology (Triantafyllou, et al., 

1993, Triantafyllou, et al., 1991), led to the discovery that the Strouhal number is of particular 

relevance to the efficiency of a fin being used for oscillatory propulsion. Theories governing 

convective instabilities were used to show that peak efficiency of a fin occurs in a narrow band 

of conditions of ‘maximum amplification’, where a reverse Kármán street can form. They were 

found to suggest that fins operate at peak efficiency at a Strouhal number of 0.25 to 0.35. 

Experiments were devised to test this theory, using a pitching and heaving foil, and the results 

of a number of previous studies of swimming animals are re-assessed. The fin experiments fell 

within the range predicted by the theory, with efficiency reaching a peak at St = 0.25. The 

animals studied ranged in size from goldfish to dolphins, but despite the wide range of 

Reynolds numbers at which they operate (from 104 to 106), most yielded Strouhal numbers 

within the 0.25 to 0.35 range, as predicted. 

Studies of birds in flight find a similar convergence of Strouhal numbers, indicating their 

adaptation for high aerodynamic efficiency (Nudds, et al., 2004). 

2.3 Fish Locomotion Theory 

2.3.1 Swimming Modes 

Methods of fish propulsion vary widely between species, and also sometimes between different 

gaits of a single species. The most common modes of locomotion can be categorised accord-
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ing to how much of the body moves during swimming (Figure 11). They progress from 

anguilliform, where undulation of the entire body provides thrust, through carangiform, where 

only the rear portion of the fish undulates, to thunniform, where thrust comes from the caudal 

fin (tail) being oscillated to provide lift-based propulsion (Breder, 1926, Lindsey, 1978, 

Sfakiotakis, et al., 1999). 

Figure 11: Anguilliform, Subcarangiform, Carangiform, and Thunniform modes (Lindsey, 1978). 

The modes are described more fully below: 

Anguilliform: An undulatory form of movement, whereby a wave travels down the length of 

the fish body, including the head, so that the entire body is used as a propulsion surface. Eels 

are examples of fish that employ an anguilliform swimming method. 

Subcarangiform: Similar to anguilliform motion, but with less movement of the head. Many 

freshwater fish such as trout and salmon use this method of swimming, which is usually 

associated with manoeuvrability. The flexibility of the body allows for sharp cornering and 

acceleration, making them well adapted to swimming in turbulent, flowing water. 

Carangiform: Involves only the rear portion of the body, with the head remaining almost 

stationary while a short wave propagates down the rear of the fish to the tail. The reduced 

flexibility compromises acceleration and manoeuvrability, but increases efficiency with respect 

to subcarangiform swimmers. Herring swim primarily in the carangiform mode. 

Thunniform: Almost all thrust is produced by oscillation of the tail, with little lateral move

ment in the rest of the body. The tuna is an example of a fish that employs thunniform 

motion. It is particularly well adapted to efficient, long distance cruising, but is less adept than 

other species at rapid changes of speed and direction (Webb, 1984). 

Other modes of propulsion involve the fins of a fish being used independently from the body, 

as appendages, while the body provides little thrust of its own. Amiiform, gymnotiform and 

rajiform modes employ the dorsal, anal, and pectoral fins respectively. The fins, which are 
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elongated and enlarged compared to fish of other swimming modes, are oscillated with an 

undulating waveform to generate thrust. In ostraciiform motion, the caudal fin is flapped 

independently from the body. It is one of the more inefficient and less common swimming, 

modes, found in fish with unusually rigid bodies, such as the boxfish. Figure 12 shows the full 

range of swimming modes. Fish are arranged along the horizontal axis from those employing 

undulatory motion, where more than one wavelength is present, to oscillation, where a rigid, 

flapping, fan-like motion is used. They are categorised in the vertical axis by the location from 

which the thrust is produced (Lindsey, 1978). 

Figure 12: Modes of forward swimming in fish (Lindsey, 1978). 

2.3.2 Wake Analysis 

Many studies have been carried out with the aim of understanding the hydrodynamic mecha

nisms by which fish propel themselves. In recent years, the rapid development and increasing 

availability of Particle Image Velocimetry (PIV) techniques has enabled researchers to investi

gate the wake patterns fish leave behind in more detail than ever before. One of the basic 

structures that has been observed is that of opposing toroidal vortex loops. 
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2.3.2.1 Toroidal vortices 

Bluegill sunfish (Lepomis macrochirus) use a combination of subcarangiform and labriform 

swimming, similar to many other species of their approximate shape. They have two distinct 

swimming gaits; they use their pectoral fins for low-speed locomotion, and at higher speeds 

they make a transition to their more powerful caudal fin. A study of the sunfish, (Lauder and 

Drucker, 2002) revealed toroidal vortices were shed from both the caudal fin and pectoral fins 

(Figure 13). A horizontal plane through the centre of this wake formation resembles a clean 

reverse Kármán street. 

Figure 13: Vortex wake of a sunfish (Lauder and Drucker, 2002). 

A later, more detailed study gave further insights into pectoral fin motion, and indicated how 

finely tuned the fins and their patterns of movement are. Their structure and actuation allows 

them to produce continuous thrust over an entire cycle; that is, the instantaneous thrust 

fluctuates, but never dips below zero (Lauder and Madden, 2007). This is possible through 

intricate control, allowing this fin’s area, stiffness and position to be varied such that in an 

instroke, outstroke, or transition period, part of the fin is always producing thrust from at least 

part of its surface. 

2.3.2.2 Vortex variants 

A similar study on dogfish shark (Squalus acanthias) (Wilga and Lauder, 2004), revealed more 

complex vortex chains in their wake. Most sharks display an asymmetrical caudal fin, with an 

upper lobe larger than the lower one (see Figure 14, top). PIV analysis of the wake behind a 

freely swimming dogfish revealed a ring-within-a-ring formation. The two rings produced jets in 

approximately the same direction (labelled A and B below) which combined downstream to 

form a single jet at an average angle of -35° to the free stream direction. 
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Figure 14: Side (top) and dorsal (bottom) views of a dogfish vortex chain (Wilga and Lauder, 2004). 

2.4 Biological Studies 

2.4.1 Insect Wing Stiffness 

Several studies have concentrated on the role of stiffness in insect wings. Insects allow their 

wings to deform considerably during flight, to produce lift and thrust. The movements of the 

wings are caused by aerodynamic forces, but controlled by the intricate structure of veins that 

support the wing membrane. A study of sixteen different flying insects produced data on the 

chordwise and spanwise flexural stiffness of the wings, at regular intervals (Combes and 

Daniel, 2003a). Although the data was gathered from a diverse range of flying insects, 

spanning six biological orders and encompassing dragonflies, flies and moths, the data was 

surprisingly consistent. The measurements showed that “spanwise flexural stiffness scales 

strongly with the cube of wing span, whereas chordwise flexural stiffness scales with the 

square of chord length.” (Combes and Daniel, 2003a). Furthermore, spanwise flexural stiffness 

of the insect wings was found to be 1-2 orders of magnitude greater than chordwise stiffness, 

mostly due to the leading edge vein. Although the study concentrates on insect flight rather 

than hydrodynamic propulsion, it is of interest because of its focus on the role of local stiffness 

variation in determining aerodynamic performance. Further work by the same researchers 

used more complex measurement methods, and finite element models to analyse the re

sponses of the wings to aerodynamic loading (Combes and Daniel, 2003b). They concluded 

that the local flexibility of the wing structures had an important role in controlling aerody

namic force production. Specifically, the structure helped to confine most of the bending 

movement to the tip and trailing edge of the wings, the geometry of which is of particular 

importance in the generation of thrust and lift. 
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2.4.2 Relevant Fish Physiology 

The studies referenced below show how some fish vary the stiffness of both their bodies and 

appendages to achieve efficient propulsion. 

2.4.2.1 Fin structure 

The internal structure of fish fins is difficult to mimic, being complex and heterogeneous. An 

important study on the mechanical properties of bluegill sunfish fins proposed a theoretical 

model of their structure (Alben, et al., 2007). The model was suggested to hold true for other 

ray-finned fishes, and was tested and verified against stiffness data from a real fin. The fins of 

ray-finned fishes consist of a membrane supported across multiple rays. Each ray is split along 

its axis, in the same plane as the membrane. The two halves of the ray are known as 

‘hemitrichs’; they can move in relation to each other, but their movement limited by the 

flexible layer of collagen linking them together. A cross-section of a fin is shown in Figure 15, 

in which the components are labelled. 

Figure 15: Fin ray cross­section (Alben, et al., 2007). 

At the base of the fin, the opposing hemitrichs are attached to muscles via tendons, while the 

centre of the fin is supported by a structure of cartilage and ligament (Figure 16). By actuating 

the muscles controlling the two surfaces of the fin, the fish can achieve a variety of movements 

to achieve propulsion and manoeuvring, and can adjust the stiffness of the fin rays by more 

than an order of magnitude. 

Figure 16: Fin ray actuation (Alben, et al., 2007). 

Paul Riggs Page 33 of 220 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

The theoretical model simplified the hemitrichs as being two parallel rows of jointed elements, 

each pair linked by a third element, simulating the layer of collagen between the two 

hemitrichs. Analysis of both the real and simulated fin rays showed that actuation by pulling 

on the tendons of one hemitrich in relation to the cartilage pad caused curvature of the ray, 

particularly at the base. 

Pectoral fins, with an internal structure similar to that described above, have been the subject 

of computational studies, in which simulations show that their anisotropic distribution of 

stiffness is critical to their ability to generate thrust (Zhu and Shoele, 2008). 

2.4.2.2 Body stiffness 

Studies by Long et al. showed that fish use their muscles not only to generate movement, and 

consequently thrust, but also to vary the stiffness of their bodies, allowing them to undulate 

efficiently at a range of frequencies, and by doing so, to aid efficient propulsion (Long, et al., 

1994, Long and Nipper, 1996). The results were gained by taking measurements of the body 

stiffness of a dead fish while electrically stimulating its muscles. 

2.5 Materials Science 

The fins tested in this thesis were made from flexible materials. The following section covers 

the basic terms that can be used in describing their properties, and briefly introduces some 

materials science theory useful in understanding their behaviour. 

2.5.1 Stress and Strain 

2.5.1.1 Engineering strain 

Engineering strain is the change in length of a sample, divided by its original length: 

∆l
ε = (22) 

l0 

Where ε is the strain, ∆l is the change in length, and l0 is the original length of the sample. It 

can also be written: 

l − l
ε = i 0 

(23) 
l0 

Where li is the instantaneous sample length. 
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2.5.1.2 Engineering stress 

Engineering stress is defined as: 

σ = 
F 

(24) 
A o 

Where σ is stress, F is the force applied, and Ao is the initial cross-sectional area of the 

sample. 

2.5.1.3 Young’s modulus 

Young’s modulus (E) is the ratio of the stress and strain, given by the following formula: 

σ 
E = (25) 

ε 

2.5.1.4 Poisson’s ratio 

Poisson’s ratio describes the tendency of a material to change in cross-sectional area under 

strain, and is defined as the ratio between transverse and axial strain, as shown in the 

following equation: 

ε 
v =

ε 
T 

(26) 
A 

Where v is Poisson’s ratio, εT is the transverse strain, and εA is the axial strain. 

2.5.2 True Stress and True Strain 

Engineering stress and strain are measures of force and extension, with respect to a sample’s 

original dimensions. However, these dimensions change from their original values as more 

strain is applied. This change is insignificant at low values of strain, so the simplified formula 

for engineering stress and strain can be used without problems, but for more accurate 

calculations involving large deformations, alternative methods are necessary, which take into 

account the instantaneous dimensions of the sample, rather than the initial size only. 

2.5.2.1 True stress 

True stress (σT) is defined as: 

σ = 
F 

T (27) 
Ai 

Paul Riggs Page 35 of 220 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

Where F is the force applied, and Ai is the instantaneous cross-sectional area of the sample. Ai 

can be determined in a number of ways. If constant volume can be assumed, cross-sectional 

area will change in the inverse proportion to the sample length, so the following is true: 

l 
A = A 0 

i 0 (28) 
li 

Where and Ao is the initial cross-sectional area, li is the instantaneous length of the sample 

(an easier measurement to take), and l0 is its original length. (Askeland and Phulé, 1989) 

2.5.2.2 True strain 

True strain (εTRUE) is an alternative measure of strain, defined as: 

 l 
ε = ln i 

 (29) TRUE 
 l0  

Where li is the instantaneous length of the sample under test, and lo is its original length. In 

terms of engineering strain (ε), it can also be expressed as: 

εTRUE = ln(1+ ε ) (30) 

Another advantage of using true strain is that strain measurements of consecutive deforma

tions can be added together, without loss of accuracy, to give a figure for total strain. The 

same is not true of engineering strain, since the two deformations will have different initial 

lengths. 

In this thesis, the words ‘stress’ and ‘strain’ on their own refer to engineering stress and strain. 

True stress and strain are always referred to by their full names. 

2.6 Relevant Work on Rigid Pitching and Heaving Foils 

The investigations referenced in this section were carried out with rigid foils, mostly of the 

NACA 0012 profile, shown in Figure 17. The National Advisory Committee for Aeronautics 

(NACA) of the USA devised the four digit airfoil series to simplify and standardise airfoil design 

(Jacobs, et al., 1933). The first two digits relate to the camber of the foil (00 denotes a 

symmetrical foil), and the last two are a two-digit number representing the foil’s thickness as a 

percentage of its chord length. 

Figure 17: NACA 0012 aerofoil profile. 

Page 36 of 220 Paul Riggs 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

2.6.1 Pitching Only 

Experiments have been carried out on rigid fins with variable frequency and amplitude, using 

different waveforms, sinusoidal and non-sinusoidal (Koochesfahani, 1989). One of the chief 

findings of this work is that there is an axial flow of fluid through the cores of the vortices 

produced by pitching fins, with a flow magnitude roughly proportional to the oscillation 

frequency and amplitude. Developments in flow visualisation technologies mean more recent 

studies are able to examine the wake patterns produced by fins in some detail, as well as 

forces. In a study of a flat, rigid foil of low (0.54) aspect ratio (Buchholz and Smits, 2005), a 

wake pattern was produced which, in the horizontal plane resembled a reverse Kármán vortex 

street. Viewed in three dimensions, the vortices curled into a horseshoe shape, joining the fin 

at its trailing edge, and alternating in rotational polarity with each half cycle of the fin. A 

diagram of the wake structure is shown in Figure 18. The arrow indicates the direction of 

water flowing past the fin. 

Figure 18: 3­dimensional wake structure behind a rigid pitching foil (Buchholz and Smits, 2005). 

The structure in Buchholz’s work appeared over a range Reynolds numbers, aspect ratios, and 

oscillation amplitudes. Numerical studies have also been carried out and are consistent with 

his findings (Dong, et al., 2005, Guglielmini, 2004). It also bears some resemblance to the 

wake structures observed behind swimming fish in PIV-based studies (Lauder and Drucker, 

2002, Wilga and Lauder, 2004), although the rotating vortices in these studies are toroidal 

rather than horseshoe-shaped. The recurrence of similar findings in many works and different 

types of study show that counter-rotating vortices such as those shown above are fundamental 

structures in oscillatory propulsion. 
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2.6.2 Heaving Only 

Water tunnel experiments with a rigid heaving NACA 0012 foil have shown the foil begins to 

produce a visible jet of fluid in its wake, moving faster than the free stream velocity, at a 

Strouhal number of approximately 0.08 (Lai and Platzer, 1999). At St ≈ 0.13 and above, a 

thrust-producing jet flow with accompanying vortices becomes apparent in the wake. (An 

explanation of how these figures were derived can be found in Appendix A) The jet velocity in 

Lai and Platzer’s experiments was found to be to be proportional to the Strouhal number. 

An elegant demonstration by Vandenberghe et al. showed how simple heaving motion of a 

wing can generate thrust, perpendicular to the driving oscillation (Vandenberghe, et al., 2004). 

A flat horizontal wing was suspended in a circular tank, free to rotate, and oscillated with a 

heaving motion (Figure 19). At certain Reynolds numbers, (20 < Re < 55), a sharp bifurcation 

was observed between the wing heaving in a steady state with no rotational movement, and 

the onset of asymmetric vortices from the upper and lower faces of the wing, with the conse

quent generation of thrust, and rotation of the wing. 

Figure 19: Apparatus for Vandenberghe’s heaving wing experiment (Vandenberghe, et al., 2004). 

Further analysis of the phenomenon was offered in later numerical studies (Alben and Shelley, 

2005). The effect demonstrates how even simple oscillation of a rigid body can produce 

locomotion when combined with the complex dynamic response of its fluid environment. 
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2.6.3 Simultaneous Pitching and Heaving 

2.6.3.1 Phase offset 

The phase offset between pitching and heaving oscillation has been found to be a critical 

factor in the interaction between leading edge and trailing edge vortices (Anderson, et al., 

1998). When the angle of attack is great enough, flow separates from the leading edge of a foil 

and forms a leading edge vortex. This moves down the fin and interacts with the vortex that 

forms on the trailing edge. If the two vortices combine constructively, an increase in perform

ance can result. Soap-film experiments on oscillating foils have shown that the interactions 

between leading and trailing edge vortices are somewhat chaotic; a small change in fin 

oscillation parameters can cause a large change in the combined wake formation (Lentink, et 

al., 2008, Schnipper, et al., 2009). 

A phase angle of 90° between pitch and heave has been found to produce the best thrust 

performance in pitching and heaving foil experiments (Read, et al., 2003). The 90° phase angle 

allowed efficient, high-thrust fin performance over a wider range of Strouhal numbers than 

other phase offsets. 

2.6.3.2 Angle of attack profile 

It has been established that changing from a sinusoidal heave waveform to a more compli

cated oscillation mode can increase the thrust coefficient of a fin (Read, et al., 2003). If the fin 

is pitching and heaving with a sinusoidal motion, the combination of pitch and heave means 

the attack profile is not sinusoidal, especially at high Strouhal numbers. If higher harmonics 

are introduced into the heave motion to turn the foil’s angle of attack profile back into a sine 

wave, the thrust coefficient increases. 

More thorough tests have been performed on foils to determine the effect of angle of attack 

profiles on performance of a pitching and heaving foil (Hover, et al., 2004). Experiments were 

carried out with the pitching angle and heave position in simple harmonic motion, out of 

phase by 90°, and also with complex waveforms calculated to provide predefined angle of 

attack profiles when combined with the heaving motion. Various profiles were tried, including 

square, saw-tooth, and cosine functions. The cosine profile yielded the best performance when 

thrust and efficiency were taken into account, although the sawtooth profile provided the 

highest thrust. The cosine function was found to produce a clean reverse Kármán street in the 

foil’s wake, consisting of two large opposing vortices per cycle, which has been shown to be a 

highly efficient wake pattern for the production of thrust (Anderson, et al., 1998). Introducing 

other harmonics into the profile added extra, smaller vortices into the wake pattern, decreas

ing efficiency. 
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2.6.3.3 Active vorticity control 

Another pitching and heaving foil study examined the effect of a fin oscillating in a Kármán 

street wake (Gopalkrishnan, et al., 1994). A D-section prism was placed in flowing water, 

upstream of the test area, to introduce a convective instability into the flow. The Kármán street 

shed from the prism consisted of alternate counter-rotating vortices, much like those shown in 

Figure 9. The pitching and heaving foil was set up to oscillate with the same frequency as the 

oncoming vortices of the prism wake. It was found to interact with the wake in a variety of 

modes; it served either to amplify, diminish, or add an extra set of vortices to those already 

present in the stream. When the foil interfered destructively with the existing vortices, it was 

found to be generating thrust with enhanced efficiency. It is by this method that some fishes 

are able to extract energy from their own leading-edge vortices (Ahlborn, et al., 1991) as 

discussed previously in Section 2.2.4 (page 27). Fish are also able to gain hydrodynamically 

from swimming in schools (Breder, 1965, Liao, et al., 2003, Weihs, 1973). 

2.6.3.4 Numerical studies 

Numerical studies allow many tests to be performed, and parameters optimised, entirely in 

software, and without the need for physical models. One such study was carried out to 

examine the behaviour of pitching and heaving rigid NACA 0012 foils, with the specific aim of 

applying the results to micro-air vehicle (MAV) flight (Tuncer and Kaya, 2005). A two-

dimensional model was created, and the parameters of pitch and heave amplitude and the 

phase angle between pitch and heave were optimised using the steepest descent method. It 

was found that high thrust production and high efficiency were mutually exclusive optimisa

tion goals; one can be obtained only at the expense of the other. 

2.7 Relevant Work on Flexible Fin Propulsion 

2.7.1 Pitching Flexible Fins 

2.7.1.1 Homogenous flexible fins 

Nekton Research1 carried out many experiments in the field of flexible fin propulsion. Many of 

their findings are applied commercially, and so remain unreleased. However, some of their 

published work reveals interesting findings. 

1 Nekton Research was a private research company founded by Charles Pell, formerly of Duke Univer

sity, MA.. Nekton was acquired by iRobot Corporation in 2008. (www.irobot.com) 
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Earlier studies had established the importance of flexibility in pitching fin propulsion, using 

fins in short bursts of oscillation to emulate fast-start swimming (Ahlborn, et al., 1997). 

Nekton’s experiments used flexible NACA 0014 fins oscillating sinusoidally and continuously 

about a single axis, and achieved static thrust-to-power ratios that compared favourably with 

conventional propeller-driven thrusters (Kemp, et al., 2003). Kemp proposed that the efficiency 

of flexible fin thrusters is due to their ability to store energy, and release it to the water out of 

phase with the driving torque. Results have shown that when flexible fins are operating at 

peak efficiency, the torque required to oscillate them is out of phase with their angular 

velocity, as shown in Figure 20. 

Figure 20: Torque­velocity plot (Kemp, et al., 2003). 

However, the effect could be caused by the fin imparting momentum to the water around it, 

then being ‘pushed’ by the moving water as it decelerates, or simply by the inertia of the fin 

necessitating a negative torque to decelerate it and change its direction. Furthermore, the 

difference in between the high and low efficiency profiles in the plot above seems chiefly to be 

of torque amplitude rather than phase angle. There is room for further experimentation in this 

area, to find out what role the flexibility of the fins plays in their efficiency. 

Figure 21 shows the range of fins used in Nekton’s trials. Most use a standard NACA 0012 

profile. 
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Figure 21: Foils used by Nekton Research. 

Another of Nekton’s findings was that fin flexibility had little effect on efficiency. More rigid fins 

produced more thrust but required more torque to drive them (Hobson, et al., 2003). Aspect 

ratio was found to have more influence on efficiency, with an optimum ratio of 1:1. Little data 

on these findings is available, and more precise information on the roles of fin flexibility and 

aspect ratio would be valuable. 

A numerical study looked at thin fins of uniform flexibility, in pitching oscillation about their 

leading edges (Alben, 2008). These were intended as simplified models of the flapping 

appendages of flying and swimming animals, such as caudal fins of fish. One of the chief 

findings of the study was that the thrust power developed by such a fin went through a 

number of resonant peaks, depending on the driving frequency. The highest thrust power 

attained was at the resonant peak with the lowest frequency; an oscillation mode in which the 

fin described a quarter wave shape at the extreme of its deformation. 

Rigid fins produced the greatest thrust at low frequencies, but were considerably less efficient 

than the flexible fins. A degree of flexibility was shown to be beneficial to thrust production at 

higher frequencies, as well as increasing efficiency. 

2.7.1.2 Active stiffness control 

The optimal stiffness of a fin for maximum efficiency or thrust generation changes depending 

on the frequency and amplitude of oscillation, and other parameters. A research team tested a 

novel method for adapting the stiffness of a pitching fin while in operation (Kobayashi, et al., 

2006). The fin comprised two rigid sections, connected by a variable length leaf spring, as 

shown in Figure 22. 
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Figure 22: Mechanical design of a variable stiffness fin (Kobayashi, et al., 2006) 

The effective spring length, and therefore its stiffness, was adjusted through a range of values, 

while the fin was oscillated with different parameters. The results revealed optimal stiffness 

values for each combination of frequencies and amplitudes. The study was a preliminary one, 

leaving many questions open for further research. Later studies with the same apparatus 

investigated the effectiveness of dynamically varying fin stiffness during each fin cycle, conclud

ing, amongst other findings, that free-swimming velocity could be increased with dynamic 

stiffness control, as could thrust efficiency under certain conditions (Nakabayashi, et al., 2009). 

The method for adapting the stiffness of the fin was simple, but it proved the concept that 

active stiffness control can be beneficial to a fin’s performance. As suitable actuator technolo

gies such as electroactive polymer muscles (see Section 2.8.4) improve, the scope for practical 

use of active stiffness control increases. 

2.7.2 Heaving Flexible Foils 

Studies of heaving-only oscillation in flexible foils have shown that adding flexibility increases 

fin performance in experiments at zero velocity, and under flow conditions at low Reynolds 

numbers. Heathcote and Gursul conducted several studies in which foils of different stiffness 

were actuated in heave only. The foils were of high aspect ratio, and flat, with uniform stiffness, 

apart from a rigid leading edge. Under static thrust conditions, introducing flexibility to the fin 

caused the thrust-to-power ratio to increase, compared to that of a rigid fin (Heathcote, et al., 

2004). However, too much flexibility was found to be detrimental. A similar finding resulted 

from experiments in flowing water, where efficiency was found to benefit from a degree of 

flexibility in the foil (Heathcote and Gursul, 2007). The results suggested the existence of an 

optimal stiffness value for a given frequency and amplitude of oscillation. Flexibility was found 
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to facilitate passive pitching of the foil behind the rigid leading edge. The phase angle between 

the induced pitch and the heave oscillation was found to be an important factor in the 

efficient generation of thrust. 

2.7.3 Pitching and Heaving Flexible Foils 

Experiments show that using flexible, rather than rigid foils under pitching and heaving 

conditions can improve efficiency (Prempraneerach, et al., 2003). The work of Prempraneerach 

et al. showed that a flexible foil of Shore hardness A60 (see Appendix C) operated with a 36% 

higher efficiency than a similar rigid fin, under pitching and heaving conditions previously 

found favourable to the rigid fin. The improvement in efficiency was accompanied by a slight 

decrease in thrust. The experiments concerned used a NACA 0014 aerofoil shape, being 

moved through a towing tank whilst pitching and heaving. One of the kinematic methods 

employed used sinusoidal oscillation of both pitching and heaving motions. The other method 

used a more complex pitching waveform to produce a sinusoidal variation in instantaneous 

angle of attack. Both methods saw an improvement in efficiency when a flexible foil was used. 

Figure 23: Cross­section of the foil design (Prempraneerach, et al., 2003). 

The experiment used a foil with a pivot point around the 0.3 chord point (see Figure 23). 

Torque was transferred to the fin through a solid core extending forwards, and also backwards 

inside the fin approximately to the 0.5 chord point, as can be seen in Figure 23. This meant 

that the effects of using a flexible material were limited to the rear 40% of the foil, so its 

movement was most closely approximated by Lindsey’s carangiform and thunniform modes 

(Figure 12, page 30). 

The fin’s construction relies on lateral movement of the axle to reproduce natural and efficient 

propulsion. The distance from the axle to the leading edge means that using angular oscilla

tion alone would cause the leading edge to oscillate with an amplitude almost as great as the 

trailing edge, a characteristic of anguilliform swimmers, but without the associated propagation 

of a wave down the fin body, due to the fin’s rigid core. 

2.7.4 Numerical Analysis of Flexible Foils 

As well as studies of rigid fins, numerical studies have been performed in which non-rigid 

bodies and their movements in fluids have been analysed. One such study modelled a free-
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swimming body, undulating with a travelling sine wave (Lu and Yin, 2005). The simulation was 

used to investigate the effects of various parameters on the flow over the body, and its thrust 

generation. Optimal values obtained from the simulation were found to be closely matched to 

those observed in nature. A similar, more advanced study modelled a swimming body as a 

chain of linked elements, each of which had its own stiffness, damping, and driving parameters 

(Farnell, et al., 2005). 

Both of the studies mentioned above simulated a self-propelled free-swimming body. More 

recently, work has been carried out on flexible foils in propulsive applications. Shin et al. have 

modelled a flexible NACA 0012 foil and its fluid-structure interactions in various flow situa

tions, including heaving oscillation (Shin, et al., 2009, Shin and Kim, 2008). The movements of 

the fin were entirely passive; the model used a combination of computational fluid dynamics 

(CFD) techniques to simulate the surrounding fluid and the consequent forces exerted on the 

fin, and dynamic thin-plate mechanics to simulate the movement of the fin itself. Interestingly, 

the bending model did not account for the fin’s stiffness profile, simplifying it instead to a flat 

plate of uniform stiffness. 

2.7.5 Spanwise Flexibility 

Most literature on flexible foils discusses flexibility in the chordwise direction. However, 

spanwise flexibility has also been studied and found to be beneficial in some circumstances 

(Heathcote, et al., 2008). For the tests carried out in the Heathcote’s study, introducing a 

degree of spanwise flexibility to a heaving high aspect ratio fin was found to increase its 

efficiency, particularly at Strouhal numbers between 0.2 and 0.3, the range most commonly 

observed in the natural world. Increasing the flexibility still further had a detrimental effect, 

suggesting the existence of an optimal stiffness for peak efficiency. 

2.7.6 Summary 

In each of the studies described above, it has been found that some degree of flexibility is 

beneficial to the efficient generation of thrust by oscillating fins. Many of the studies postu

lated a peak stiffness value dependent on the other attributes of the fin and its oscillation. In 

each of the studies, the stiffness profile was defined by the shape of the fin, or by its internal 

structure, which in turn was chosen for practical or reasons, or in accordance with conven

tions laid down in previous works, to aid comparison between studies. 

2.8 Fin Actuation Methods 

The following sections describe the methods in which other investigators have actuated fins in 

previous studies. 
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2.8.1 Industrial Motion Control Systems 

Commercially available servomotor systems have been used in many previous studies of this 

nature (Hover, et al., 2004, Read, et al., 2003). Brushless DC motors are often used, since their 

design means they have a lower mass rotor than other configurations, and the lower inertia 

allows faster acceleration and deceleration. They can be specified to be as fast and powerful as 

necessary, but are very costly. 

2.8.2 Servomotors 

Model servomotors are inexpensive, easy to control, and highly versatile, making them ideal for 

robotic projects. Many experimental robots, fish-like and otherwise, use them for actuation. 

Their drawbacks are that they are not as accurate as industrial servo systems, and tend to use 

small motors with limited output power. Servos with different gear ratios provide a compro

mise between output speed and torque. 

2.8.3 Shape Memory Alloys 

Shape memory alloys (SMAs) are usually used in the form of thin wires that change length 

when heated by an electric current. They are useful for actuating robots and other devices 

where space is in short supply. Mechanically they are very simple and effective, but they are 

also fragile, and break if subjected to too much tension. They are inefficient, and slow to 

respond, especially where the heat they generate is not easily conducted away. Like real 

muscles, they can only pull, not push, but using them in opposing pairs requires careful 

control, so that the contraction of one side does not over-stress and break the other. 

They have been used to actuate a biomimetic hydrofoil (Rediniotis, et al., 2002), which 

consisted of a six-segment skeleton with SMA actuators articulating each segment (Figure 24). 

It achieved oscillations of 1 Hz, but needed active cooling of the SMA wires to achieve that 

response time. Opposing pairs of SMA actuators were found to have a short life due to the 

high stress levels, and were replaced with SMA-spring combinations. 
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Figure 24: Shape Memory Alloy actuated hydrofoil. 

2.8.4 Electroactive Polymers 

Electroactive polymers are a relatively new form of actuator. They produce very small forces in 

comparison to more conventional actuators. However they are extremely compact, and provide 

movement with no need for gearboxes and other mechanisms. Although power-hungry, their 

unique properties give them advantages over conventional motors that have been exploited in 

biomimetic projects (Lauder, 2007, Punning, et al., 2004). 

2.8.5 Mechanisms 

Mechanical linkages are a simple, reliable way of producing cyclic motion. Through ingenious 

design, many different output motions can be created, but a disadvantage is that the range of 

output waveforms is not infinitely variable, as it is for electronically-controlled methods. The 

Scotch yoke is a common mechanism for turning rotational movement into sinusoidal linear 

oscillation. It consists of a linear slider, constrained in all but one direction, coupled to a 

rotating arm via a pin, allowed to slide freely in a slot in the yoke, as shown in Figure 25. 

Figure 25: Scotch Yoke mechanism. 

When this linear motion is converted back into rotation by a rack and pinion, sinusoidal 

rotational oscillation results. A combination of mechanisms was used by Gopalkrishnan et al. 

in their work studying the effects of a flapping foil on an oncoming Kármán vortex street 

(Gopalkrishnan, et al., 1994). 
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2.9 Applications of Fin Propulsion 

Many robots have been created with biomimetic propulsion systems, for a variety of purposes. 

Some studies concentrate on the control systems necessary to achieve optimal performance 

from a specific mechanical system. Others develop biomimetic swimming machines as an aid 

to understanding how real animals propel themselves. Biorobotic models mimic the move

ments of their natural counterparts in a realistic and repeatable way, and are far more tolerant 

of instrumentation and flow analysis techniques used to observe their motion than real fish. 

This section discusses several examples of complete vehicles using biomimetic propulsion that 

have been created to date. 

2.9.1 Robotuna and Successors 

Robotuna was a project carried out at the Massachusetts Institute of Technology (MIT) in 

which the motion of a swimming tuna was mimicked with a 6-jointed structure surrounded by 

a metal skeleton, encased in a flexible skin. 

Figure 26: Robotuna II. 

Extensive experiments were performed with Robotuna with the aim of gaining a better 

understanding of how real tuna swim. The flow patterns around a tuna’s caudal fin were 

mathematically modelled, and a later project, Robotuna II (shown in Figure 26), produced an 

untethered free-swimming submarine mimicking a tuna’s swimming gait, based on the findings 

of the original Robotuna project. The data gathered from MIT’s Robotuna projects was used 

by the Draper Laboratory2 to develop the Vorticity Control Unmanned Undersea Vehicle 

(VCUUV), a more advanced, untethered robot, capable of swimming at up to 1.2 ms-1 

(Anderson and Kerrebrock, 1999). The craft has a body length (BL) of 2.4 m, so this equates 

to a normalised speed of 0.5 BL s-1 . Bluefin tuna (Thunnus thynnus) comfortably cruise at 

2 www.draper.com 
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more than double this normalised speed over long periods, and in short bursts can attain 

speeds of over 22 ms-1 (80 kph) (Wardle, et al., 1989). 

More recent work has built on the success of earlier biorobotic studies, with new robot designs 

providing deeper insights into fish swimming dynamics. In a departure from the rigid mecha

nisms with multiple joints seen in Robotuna and its siblings, robotic fish with semi-compliant 

bodies have been developed, using much simpler actuation, but nonetheless producing a 

realistic gait (Alvarado and Youcef-Toumi, 2006). These robots have been used successfully to 

study the characteristics of specific composite wake formations, using PIV equipment (Epps, et 

al., 2009). 

2.9.2 Proteus 

Proteus, the ‘Penguin Boat’ (Figure 27) was created by engineers at the Massachusetts Institute 

of Technology. Its fins were rigid, and its configuration similar to that of most ordinary ships: a 

long, narrow body with a propulsion unit at the rear. 

Figure 27: Proteus, the 'Penguin boat'. 

In scale trials the propulsion system achieved propulsive efficiencies of up to 87%, compared 

to efficiencies of around 70% for propeller-driven craft (Thomson, 1997), However, issues of 

cost, actuation and technical complexity have so far prevented the penguin boat’s propulsors 

moving beyond the prototype stage. 

2.9.3 Morpheus 

Nekton Research and Florida Atlantic University constructed a highly successful example of a 

biomimetically propelled submersible robot (Hobson and Kemp, 2002, Hobson, et al., 2003). 

Morpheus (Figure 28) was an existing Unmanned Undersea Vehicle (UUV) to which research

ers at Nekton were able to add oscillating fin thrusters. 
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Figure 28: Morpheus UUV with Nekton flexible fin thrusters. 

They found the fins’ ability to provide large amounts of thrust very rapidly allowed very 

responsive manoeuvring of the submarine. It was able to hold its position in moving waters 

better than had previously been possible using conventional propeller-driven thrusters. The 

ability to start and stop abruptly was also welcome, as they increased the submarine’s ability to 

manoeuvre and avoid obstacles. 

2.9.4 Madeleine 

Nekton’s most recent fin-powered robot used four flexible fin thrusters operating on parallel 

axes in each corner of a flat, rectangular body (Figure 29). While the design is not biomimetic 

in the sense that there are no animals using a similar configuration of fins, it has been useful 

for studying the control of multi-finned robots. 

Figure 29: Nekton Research’s 4­finned swimming robot, Madeleine. 

Madeleine is extremely manoeuvrable, and good at starting and stopping quickly. One of the 

project’s findings so far is that four fins are good for manoeuvrability, but two suffice for 

efficient propulsion. The robot has the added advantage of being amphibious; it can ‘walk’ by 

pushing its body forward with its fins, with a gait similar to that of a seal on land. 
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One of the studies carried out with Madeleine looked at the benefits and drawbacks of using 

four fins instead of two, finding that four fins were good at producing high instantaneous 

thrust, while two were optimal for efficient swimming (Long, et al., 2006). 

More recently, six-finned robots have been produced, such as AQUA, from McGill University, 

Canada (Dudek, et al., 2008). Its extra fins make it more capable on land than four-fined 

predecessors, and its fins are interchangeable with compliant legs, allowing it to function on a 

variety of terrain types. Both types of appendage work to some extent, both on land and 

underwater (Figure 30), so a compromise between the properties of legs and fins could be 

reached to give the robot optimal amphibious characteristics for a given application. 

Figure 30: AQUA 6­finned robot in legged and finned configurations. 

2.9.5 Further Examples 

Several examples exist of relatively simple robotic fish being created, in order to experiment 

with their control systems and mimic different swimming modes and behaviours. A common 

design is to build a chain of independently controlled servomotors, housed inside a stream

lined body, and weighted to float in an upright orientation. One such a craft (Liu, et al., 2004) 

used a control system that moved the segments of the robot in a way that best approximated 

a travelling wave, moving down the fish’s body. This system was built upon, to mimic cruise 

turns and sharp turns of the kind observed in carangiform fishes. 

The robotic fish shown in Figure 31 is of a very similar mechanical design, but employs a 

radically different control system. It is the result of a combination of different research projects, 

in fuzzy logic control, vision systems, and mathematical systems modelling (Yu, et al., 2004, Yu, 

et al., 2005, Yu, et al., 2003). 
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Figure 31: Yu's 4­link robotic fish (Yu, et al., 2003). 

The AUV shown in Figure 32 was designed to show that flapping foils are a viable propulsion 

source for an underwater vehicle (Licht, et al., 2004). It uses four pitching and rotating foils 

and achieves good manoeuvrability through complex control systems. 

Figure 32: Flapping Foil AUV (Licht, et al., 2004). 

Fish are not the only animals to employ finned propulsion. Researchers created a robot with a 

pair of rigid fins at the rear, which could be flapped in opposite phase, with a ‘clapping’ motion 

derived from seals, or in phase, for a more fish-like gait (Bandyopadhyay, et al., 2000). 

Essentially the work agreed with several others in the field, that the large unsteady forces 

generated by the fins made them well suited to manoeuvring applications. 

Several more abstract applications of biomimetic propulsion exist, which take their inspiration 

from biological examples. The Amoebot (Chen, et al., 2003), is a ‘Metamorphic Underwater 

Vehicle’ that propels itself by changing its body shape, similar to an amoeba (see Figure 33). 

Flagellar propulsion, that is, using a spinning helix to generate thrust, has also been tested as 

a means of propelling swimming robots (Behkam and Sitti, 2005). 

While interesting, at their current scales these methods are extremely slow and inefficient, so 

their applications are limited at present. However, as actuators and manufacturing methods 
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become available at ever-decreasing scales, they may start to find applications in the field of 

nanorobotics, which has particularly interesting implications in biomedical research. 

Figure 33: Amoebot, shown in two positions. 

A more frivolous application of biomimetic robotic swimming is the creation of animatronic 

fish designed to form a ‘virtual aquarium’ (Figure 34). 

Figure 34: A trial virtual aquarium in Japan created by Mitsubishi (Terada and Yamamoto, 2004). 

2.9.6 Summary 

Propellers and conventional thrusters have already reached a high level of maturity, and 

perform very well in conditions of high-speed steady-state thrust. However, there exists a 

considerable gap in manoeuvring performance between fish and engineered underwater 

vehicles (Bandyopadhyay, 2001). Consequently the practical applications for fin propulsion 

that are under the most serious consideration are those in low-speed manoeuvring. The bio

inspired robots that exist for purposes other than this are generally motivated by academic 

interest, rather than with specific applications in mind. 
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2.10 Conclusion 

2.10.1 Findings 

This literature review has revealed a large body of work of relevance to flexible oscillating fin 

propulsion. There was a loose division between work that sought to further understanding of 

biological swimming mechanisms through animal experimentation, and physical and numeri

cal models of living creatures; and work inspired by particular physical phenomena, observed 

and replicated, again with the aid of mechanical test equipment and numerical models. 

Observation of the methods used in previous studies yielded some helpful discoveries. Paying 

attention to precedents set in previous work has been beneficial, allowing this thesis to cover 

new ground whilst heeding the examples and lessons learned from previous studies. 

The purpose of the literature review was, however, to identify areas with scope for further 

research, within the field of flexible fin design. One specific area was identified as having 

particular potential: the role of stiffness profile in oscillating fin performance. Very few studies 

were found to pay special attention to localised stiffness properties, the closest example being 

that of Combes and Daniel’s study of insect wing dynamics, and the work of Alben et al. on 

pectoral fin rays. Bearing in mind the significance of local stiffness and its contribution to the 

overall dynamics of insect flight, in-depth discussion of the role of stiffness profile was notably 

absent from many studies of oscillating flexible fins. 

Several studies found flexibility to be beneficial to fin performance, especially when the 

oscillation properties were tuned accordingly, but where flexibility in fins was explored, it was 

generally applied in one of two ways: To use a flat plate of uniform stiffness, or to use a fin of 

arbitrary shape, made from a flexible material, such that its stiffness varied from leading to 

trailing edge dependent on its thickness. NACA designated fin designs have been used widely 

in oscillating fin research, but their popularity is due to precedents set in previous rigid-foil 

studies, rather than to their stiffness properties. The stiffness profile of a NACA fin is inherent 

to its shape, and its shape was originally conceived as a rigid structure, optimised primarily for 

its aerodynamic properties. 

2.10.2 Hypothesis 

Therefore, the role of stiffness profile in thrust generation seemed an exciting area for further 

study. The following hypothesis was proposed, to be tested experimentally: 

“Use of a biomimetic fin stiffness profile can improve the effectiveness of a 

flexible oscillating fin, over that of a standard NACA designated fin shape.” 
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'Effectiveness' is chosen as general term to encompass any metrics that make one fin design 

preferable to another in real-world applications. Thrust production and efficiency are the most 

important measurable variables, but other factors such as lateral force should also be taken 

into account. 

The remaining chapters in this thesis concentrate largely, although not exclusively, on 

gathering evidence to support or disprove this hypothesis. 

2.10.3 Aims and Objectives 

With a hypothesis in place, the next step was to identify the necessary steps towards its 

validation or disproof. The following aims and objectives were defined, to guide the subse

quent investigations and set milestones for each stage of the research. 

2.10.3.1 Fin fabrication technique 

•	 Design a fabrication method for manufacturing fins: 

o	 Accurately and consistently 

o	 With a definable stiffness profile 

o	 In a range of material stiffnesses 

•	 Investigate potential moulding materials, and select one that is: 

o	 Readily available 

o	 Suitable for creating flexible fins with the chosen manufacturing method 

o	 Available in a range of stiffnesses 

2.10.3.2 Develop experimental methods 

•	 Choose appropriate fin profiles for testing, which: 

o	 Are suitable for manufacturing with the chosen materials and methods 

o	 Satisfy the requirements of the hypothesis 

•	 Design and build apparatus for testing the fins: 

o	 Capable of oscillating fins of the selected designs at a range of frequencies 

and amplitudes 

o	 Capable of measuring thrust production and other parameters that have a 

bearing on the effectiveness of a fin 
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o	 Automated, to carry out sequences of tests without time-consuming adjust

ment 

•	 Develop methods for analysing the collected data, which: 

o	 Reveal key indicators of real-world performance, so that fins can be assessed 

comparatively 

o	 Are able to process data from numerous experiments without excessive man

ual input 

o	 Visualise the data in a descriptive and helpful way 

2.10.3.3 Conduct experiments 

•	 Conduct experiments to characterise the performance of the selected fins, within the 

experimental range of the test equipment 

•	 Continue experimental phase until enough data has been collected to validate or dis

prove the hypothesis 

2.10.3.4 Draw conclusions 

•	 Analyse the implications of the experiments on the hypothesis 

•	 Identify potential avenues for further investigation based on experimental findings 
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Chapter Three


Preliminary Investigations


3.1 Introduction 

Before the work described in the main experimental chapters of this thesis took place, several 

brief speculative investigations were carried out in a variety of areas. These included image 

analysis methods, simple physical and numerical fin models, and investigations into actuation 

and manufacturing techniques. Further information about them can be found in the transfer 

report that precedes this thesis (Riggs, 2006), which is included on the accompanying supple

mentary data CD. 

Of these preliminary investigations, several were not ultimately of relevance to the work 

presented in this thesis, and have been omitted. Others were of more significance, and their 

findings are presented in this chapter. The testing of the fin moulding material yielded useful 

results of interest both here and in future experiments with flexible fins. The dissection of a 

dogfish gave insights into the complexity and structure of an elegant natural fin design. 

3.2 Fin Material Testing 

3.2.1 Introduction 

A selection of materials was explored to find one suitable for making flexible fins. Polyure

thane and silicone rubbers were quickly identified as good candidates. After searching 

datasheets of several resins, a silicone rubber moulding compound sold under the name 

‘Moldsil’3 was identified as having good properties for the task. 

Moldsil consisted of a resin and a catalyst component, which were mixed together with a ratio 

of 10:1. The resin mixture was a viscous liquid, able to flow around objects and reproduce 

complex shapes. Different catalysts resulted in different hardening times, and slightly different 

material properties. The standard catalyst gave a working time of about an hour before the 

mixture showed signs of solidifying. It then became solid within 10 hours, and reached its final 

properties within 24 hours of mixing. Its density was 1150 kgm-3. It was available in different 

hardness grades, all of which used the same catalyst. Its softest grade had a much lower 

3 Supplied by W.P. Notcutt Ltd. (www.notcutt.co.uk) 
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stiffness than other liquid resins, allowing fins to be produced with greater flexibility; this was 

one of the key factors in its selection. 

Its intended application was producing negative moulds of solid objects, so another of its 

strengths was that it did not adhere to most materials after setting. This meant a variety of 

mould materials could be used, usually without the use of release agents to prevent sticking. 

These materials included flexible polypropylene sheet, useful for creating hand-built, smoothly 

contoured moulds; acrylic, which is well suited to computer numerical controlled (CNC) 

machining; and Acrylonitrile Butadiene Styrene (ABS), the material used by the rapid prototyp

ing machine described in Appendix D.3 (page 200). 

Because Moldsil was intended as a moulding compound for model-makers rather than an 

engineering material, the literature supplied with it gave only basic details about its material 

properties. Also, no data was available on mixing different grades of resin to create rubbers 

with varying properties, so it was necessary to carry out some materials tests on samples of the 

rubber. The goal of the experiments documented below was to ascertain the stiffness proper

ties of the material when mixed with different ratios of hard and soft resin, and to make sure 

the resin was suitable for future fin experiments. 

Since the silicone under test was capable of elongation of up to 600% before breaking, and 

was designed to return to its original shape after such stretching, a silicone fin oscillating 

underwater was likely to be flexing well within its elastic limit. Therefore the most important 

property affecting its behaviour was elastic modulus. Its tensile elasticity (Young’s modulus) 

could be determined with a simple tensile test, along with the Poisson’s ratio for the material. 

Silicone rubber is isotropic, so from these two figures, the material’s shear modulus could be 

calculated if necessary. 

An experiment was performed to determine how the resin mixing ratio influences these 

properties. The following sections refer to this proportion as a percentage by mass of soft resin 

in the mixture, not including the catalyst. For example, a 20% mixture would consist of 2 parts 

soft resin, 8 parts hard resin, and 1 part catalyst. 

3.2.2 Testing Methods 

3.2.2.1 Sample shape 

The usual method for tensile testing is to create a sample in a ‘dog bone’ shape as illustrated 

in Figure 35. 
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Figure 35: Dog­bone sample shape. 

The shape is necessary to ensure there are no stress concentrations around the clamping 

areas at either end, or where the wider section necks down to the test section. However, stress 

concentrations are irrelevant when a material is not being tested close to its yield stress. In 

fact, with a highly elastic material, deformation occurring in the wider section of the sample as 

well as the narrow section may have caused ambiguity in the results. So for the following tests, 

a sample shape was chosen that was easier to make than the dog-bone profile, wasted a 

minimum amount of resin, and gave more accurate results. 

100 mm 

Figure 36: Chosen silicone rubber test sample shape. 

The shape was a long, slender cylinder, with a length to diameter ratio of around 20:1, shown 

in Figure 36. It was created using a drinking straw as a mould – one end of the straw was 

sealed with candle wax, and the other end was placed in a cup containing a small amount of 

resin; approximately double the volume of the straw, to include a reasonable safety margin. 

The cup was suspended at an angle such that the unsealed end of the straw was submerged 

in resin, and then placed in a vacuum chamber. The vacuum drew the trapped air out of the 

drinking straw, through the resin. When the air was returned to the vacuum chamber, the 

ambient air pressure pushed the resin up the straw, which set to form a flawless, bubble-free 

cylinder. Clamping the sample at both ends resulted in slight deformation of the material near 

the clamps, but the large aspect ratio of the sample meant this deformation had a negligible 

effect on the results. 
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Figure 37: Apparatus for creating resin test samples. 

The samples were created by adding small portions of resin to a mixture, and accurately 

weighing how much had been added (Figure 37). This meant the resin proportions were a 

measured variable rather than a controlled one, but resulted in better accuracy than the 

alternative, which was to try to measure and add a known quantity of each resin many times 

over. A spreadsheet was used to keep track of the precise proportions of soft and hard resins. 

3.2.2.2 Test equipment 

Tests were carried out on an Instron4 1195 tensile testing machine, equipped with a 20 N load 

cell. Before testing, the sample diameters were measured with a micrometer. All the samples 

were identical within the measurement resolution of ±0.05 mm, having been moulded by the 

same process. The jaws of the Instron were moved to a distance of approximately 60 mm from 

each other, and the rubber test sample was clamped firmly between them. The jaws were then 

moved a few millimetres closer together, to ensure the stress on the sample was negative, 

before beginning the test, stretching the sample at a rate of 50 mm min-1 . The distance at 

which the stress became positive was recorded as the true sample length, from which the 

strain was calculated. The samples where stretched to double their original length (100% 

strain), then their diameters were measured, before they were relaxed to zero stress at the 

same rate of 50 mm min-1 . 

4 www.instron.co.uk 
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3.2.3 Results 

3.2.3.1 Stress­strain behaviour 

The results over a full test cycle from 0 to 100% strain are shown in Figure 38, and demon

strate that the resin is subject to hysteresis, like all natural and artificial rubber compounds. 

This appears to be more pronounced in the hard resin than the soft. The drop in stress on the 

right hand side of the graph occurred during a pause of approximately one minute, while the 

stretched sample diameter was being measured. Further testing would be necessary to 

determine the precise nature of the hysteresis, but it is not relevant to the tests carried out in 

this thesis, for which the strain placed on the rubber will be momentary, and small (of the 

order of 10%). 

Stress­Strain Curves, Full Cycle, 100% Strain 

­2
 

S
tr
e
s
s

 / 
N
m

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05


0


0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Strain / % 

Hard resin 

Soft resin 

Figure 38: Stress – Strain curves over a full test cycle of the silicone rubber moulding compound. 
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Figure 39 shows the results of all of the resin tests, up to a strain of 30%. The ratio of hard to 

soft resin is shown as a percentage at the end of each curve. Slight non-linearity is apparent, 

with the gradients reducing slightly as strain increases. A correlation can be seen between 

each resin mixture and its properties, a relationship shown more clearly in Figure 40. 

Stress­Strain Curves, 30% Strain 
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Figure 39: Stress – Strain curves to 30% strain. 
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3.2.3.2 Young’s modulus 

To gain a representative Young’s modulus for the samples, the gradient of the stress-strain 

curves up to 10% strain was measured. Plotting these values against the proportion of hard to 

soft resin in each sample yielded the graph in Figure 40, which shows the relationship to be 

linear within the bounds of the experiment. 

Young's Modulus at 10% Strain Against Resin Proportion 
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Figure 40: Relationship between Young’s Modulus and hard / soft resin mixture. 

The Young’s modulus of the resin mixtures varies between 0.31 Nm-2 for the soft resin and 

0.53 Nm-2 for the hard. The relationship between resin proportion (Phard) and Young’s modulus 

(E) can be expressed as: 

E = 0.22Pre sin + 0.304 (31) 

Where Presin is a value between 0 (100% soft resin) and 1 (100% hard resin). 
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3.2.3.3 Poisson’s ratio 

Table 1 shows the values of Poisson’s ratio calculated for the rubber samples. The diameter of 

the samples was measured under 0% and 100% strain, and the Poisson’s ratio calculated 

using equation (26). The materials conform to expectations for rubber, having Poisson’s ratios 

of around 0.5, indicating that the material is incompressible. The scatter in the results is most 

likely caused by the samples not being perfectly circular in cross-section, leading to discrepan

cies in the diameter measurements depending on the orientation of the sample. 

Ratio of 
hard resin 

Diameter 
before (mm) 

Diameter 
after (mm) 

Poisson's 
ratio 

0% 5.8 4.20 0.47 

21% 5.8 4.15 0.48 

39% 5.8 4.30 0.43 

60% 5.8 4.20 0.47 

76% 5.8 4.15 0.48 

100% 5.8 4.30 0.43 

Table 1: Poisson's ratio calculations. 

3.2.4 Conclusions 

The experiments revealed the properties of the resins with greater detail than had been 

provided in their datasheets, and confirmed that the properties were consistent and predict

able when different grades of resin were mixed together. The relationship between resin 

proportion and Young’s modulus was defined with a linear equation. Overall, the experiments 

confirmed the suitability of the Moldsil resin for making fins, and confirmed that the hard and 

soft grades could be mixed together in different proportions to achieve a range of stiffnesses. 
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3.3 Dogfish Dissection 

3.3.1 Introduction 

As an aid to understanding the structure of a biological fin, a dissection was carried out on a 

fin from Scyliorhinus caniculus, commonly known as a dogfish, or cat shark. The way in which 

dogfish use a largely passive caudal fin actuated by muscles further up the body was of 

interest, because an understanding of the mechanisms involved can provide clues about how 

to design an effective biomimetic copy. The dogfish before the dissection is shown in Figure 

41. 

Figure 41: Lesser Spotted Dogfish (Scyliorhinus caniculus). 

The dogfish has several fins along the length of its body, labelled in Figure 42: 

Anal fin 
Pelvic fin 

Pector fins al 

Second dorsal fin 

First fin dorsal 

Caudal fin 

Figure 42: Dogfish fins. 

3.3.2 Fin Behaviour and Microstructure 

An interesting property of the fins became apparent when they were detached from the body 

of the dogfish (Figure 43). Holding a small sample of the fin at the base and subjecting it to a 

shear force applied to its upper and lower surface caused the whole fin to curl, all the way to 
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the tip, suggesting the forces were being transmitted by a complex, anisotropic internal 

structure. 

Figure 43: Dogfish fin behaviour. 

When observed in the correct light, lines can be seen from the base to the tip of the fins, 

suggesting the orientation of the internal structure. The lines are hard to distinguish in the 

photograph in Figure 44, so extra lines have been added for emphasis. 

10 mm 

Figure 44: Lines indicating internal structure of dogfish pectoral fin. 

Page 66 of 220 Paul Riggs 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

A sample was taken from the fin, as shown by the dotted line in Figure 44. After staining the 

fin with the biological stain toluidine blue, its constituent materials could be easily distin

guished. Figure 45 shows a magnified view of the fin’s cross-section, perpendicular to the 

fibres that run through the fin. The images showed a composite microstructure, consisting of a 

thick layer of remarkably tough skin, with underlying elastoidin fibres running through a 

weaker fleshy matrix of collagen-based connective tissue. 

Figure 45: Microscope photographs showing internal microstructure of dogfish fin (left) and elastoidin 

fibres (right). 

The fibres are strong and stiff in tension and appear to be the component that transmits 

forces along the length of the fin. The connective material had interesting properties – time 

did not permit detailed analysis of its behaviour, but simple manual manipulation under the 

microscope of the material joining the two sides of the fin suggested it had a shear stress / 

shear strain curve similar to that depicted in Figure 46. Applying a shear force to the material 

caused it to deform, but the greater the deformation, the more resistance it provided to further 

deformation. 

S
h
ea
r 
st
re
ss

 

Shear strain 

Figure 46: Predicted shear stress / shear strain curve for dogfish fin matrix material. 
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3.3.3 Skin 

The skin of the dogfish was covered in tiny spines (see Figure 47). It is likely that the surface 

of the fin assists the dogfish in passing through the water with the minimum of boundary layer 

drag, thus saving energy (Lang, et al., 2008). 

The most efficient way for shapes to pass through fluid is under laminar flow conditions. 

However, imperfections over the surface of a body can reduce drag over objects where 

Reynolds numbers are too high to allow completely laminar flow. By inducing small vortices in 

a controlled way, larger ones can be prevented, and the overall drag cost of the turbulence is 

reduced. 

1 mm 

Figure 47: Microscope photograph showing dogfish skin. 

3.3.4 Conclusions 

Actuators are a serious bottleneck in the development of many biomimetic systems, as the 

current state of the art in actuator technology lags far behind the speed, efficiency and 

strength of biological muscles. While the intricate structure of the dogfish fin would be 

extremely hard to mimic, the principle of achieving complex motion with structure rather than 

actuators is an interesting one. It is possible that innovative biomimetic propulsion designs 

may be able to utilise very simple actuators, and rely on internal structure to produce the 

desired motion. 
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Chapter Four


Development of Experimental Methods


4.1 Introduction 

This chapter follows the development of experimental equipment and methods to test the 

hypothesis given at the end of Chapter Two. The chapter is divided into sections, each of 

which covers a major aspect of the methods and equipment used in this thesis. It describes in 

detail the alternatives considered, and the design process that lead up to each accepted 

solution. Sometimes, several iterations of thought or design were necessary, and each step 

toward the final, successful design is documented. Several software packages are referred to; 

descriptions of these can be found in Appendix F. 

4.2 Fin Fabrication Methods 

In order to test different shapes and sizes of fin, it was necessary to build an apparatus to 

fabricate the fins in an accurate and repeatable way. Several methods were considered for this 

task, and their design, construction and testing is documented in Appendix D in some detail. 

Ultimately, one method proved most suitable, and was used to create all the fins tested in this 

thesis. The method is described in the sections below. 

4.2.1 Hybrid CNC Method 

Machining a two-piece plastic mould with a computer numerical controlled (CNC) milling 

machine was considered as a method for creating fins, but needed some improvement to 

overcome the limits of the available CNC equipment (see Appendix D.4, page 206). A modified 

version of the CNC machining method was developed, and resulted in a good combination of 

cost, accuracy and repeatability. Acrylic was chosen as an appropriate material for the mould, 

as it is stiff, inexpensive and easy to machine. 

A four-part mould was designed, in which the curved surfaces of the fin were formed by two 

identical CNC machined acrylic blocks. The top and bottom surfaces used thinner acrylic 

plates, with holes to hold the fin axle in position, and allow filling. Accurately positioned ridges 

in the plates held the acrylic blocks together while the resin cured. 

Because the flat surfaces of the fin were formed by the additional flat plates rather than the 

CNC machined blocks, the blocks themselves could be simple, prismatic shapes, as shown in 
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Figure 48, with no sharp corners, and needing only a ball-nose cutter to reproduce. The 

smooth contours of the fin mould in the Z (vertical) axis required many passes of the machine 

tool to produce a smooth surface, but the finished mould was of very high quality, with no 

visible surface rutting. 

Figure 48: CNC machined fin profile mould. 

When all the mould components were assembled and in position, with the axle in place, the 

interfaces were sealed with latex adhesive. Resin was poured in via a receptacle fixed to the 

top plate of the mould, and connected to the mould cavity via a small hole. The mould was 

filled in a vacuum to ensure there were no bubbles in the completed fin. Figure 49 shows the 

mould assembled and ready to be filled with resin. The rod protruding vertically from the 

mould is the fin axle. 

Figure 49: Hybrid CNC fin mould. 
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4.2.2 Adhesion to Fin Axle 

4.2.2.1 Absorbent fabric 

Regardless of the fin mould design, special attention must be paid to the interface between 

the silicone rubber fin material, and the stainless steel axle. The silicone naturally peels away 

from the steel very easily, so a combination of materials is required to allow the axle to 

transmit force to the fin without this happening. One solution is to insert a rigid core into the 

fin, and mould the rubber around it (Prempraneerach, et al., 2003), but this affects the 

stiffness of the fin considerably, meaning it is no longer entirely flexible. The first solution 

chosen for this investigation uses a combination of cyanoacrylate glue (superglue), which 

bonds very effectively to the steel fin axle, and thin cotton-polyester fabric, the porosity of 

which allows both the superglue and the silicone resin to seep in and set, creating a strong 

interface between all components, resistant to peeling and shear (Figure 50). 

Stainless steel axle 

Polyester-cotton fabric 
Cyanoacrylate glue 

Silicone rubber fin 

Figure 50: Cutaway diagram of the fin­axle interface. 

4.3 Fin Actuator 

4.3.1 Introduction 

A number of fin actuation methods were used over the course of this investigation. 

•	 Scotch yoke mechanism – a simple and entirely mechanical system providing sinusoi

dal motion at a range of frequencies and amplitudes. 
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•	 DC motor and control system – A DC servomotor and encoder, linked to a computer, 

providing closed-loop position control. 

•	 Model servomotor – A system using computer control of a high-performance model 

servomotor to replicate arbitrary waveforms. 

Each of these methods is discussed in detail in subsequent sections. 

4.3.2 Fin Orientation 

Although much of the previous work in the field of oscillating fin propulsion has used fins 

with their leading edge in a horizontal orientation, the decision was taken to oscillate fins in a 

vertical orientation for the experiments in this thesis. 

For a rigid or near-rigid fin, the direction of gravity can be assumed to have negligible effect on 

behaviour, because the hydrodynamic forces at work will have a far greater effect on the fin’s 

deformation than the influence of gravity. Assuming the surrounding fluid is incompressible 

and of uniform density, it will also be unaffected by gravity. 

Compared to those used in previous work (Prempraneerach, et al., 2003), the fins used in the 

experiments described in this thesis were of low stiffness, and their density was slightly greater 

than that of water (1150 kgm-3), making them droop slightly if held in a horizontal orientation. 

Oscillating the fins under these conditions could result in the generation of asymmetrical 

forces. Therefore, vertical orientation was selected as the most appropriate. A beneficial side-

effect of this decision was that it allowed the fin to be actuated via a rigid shaft from above, 

with no need for any mechanisms beneath the surface of the water. 
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4.3.3 Scotch Yoke Mechanism 

The first mechanism constructed for testing fins was a mechanical device capable of produc

ing sinusoidal oscillation about the fin axis. It used a scotch yoke mechanism to produce a 

sinusoidal linear oscillating motion, which was converted to axial oscillation by a rack and 

pinion (Figure 51). A small pitch was selected for the rack and pinion to minimise backlash 

and allow smooth transmission of force to torque. 

Fin axle 

Rack 
Follower 

Adjustable 
arm 

Motor 

Pinion 

Bearing 

Figure 51: Scotch yoke mechanism. 

The amplitude was adjustable by changing the length of the yoke arm, if necessary down to 

zero amplitude operation, where the pin engaged by the yoke is concentric with the motor 

axle. The arm was constructed from two parts, fixed securely together with two hex bolts. 

Loosening the bolts allowed the two sections of the arm to slide past each other. It was found 

that the manual method of adjusting the arm’s length made it difficult to produce accurate, 

repeatable results, so an adjustment mechanism was devised and constructed from RP 

components, which fitted around the arm, allowing the total length to be varied by a screw 

thread, and the diameter read from a scale. Far more accurate adjustments were possible after 

this modification. The frequency of oscillation was controlled by adjusting the power supplied 

to the motor. This was achieved using a PWM variable motor speed controller adjustable via a 

potentiometer. The fin axle passed down through the rig to the fin, and was constrained by 

two bearings, one above and one below the rack and pinion (Figure 52). At the top end of the 

fin axle, a potentiometer was connected via a zero-backlash flexible coupling, to measure the 

angular displacement of the fin. The coupling was necessary so that the potentiometer and fin 

axle could both be constrained securely, without generating excessive forces in the event of 

imperfect alignment between the two axles. 
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Potentiometer 

Flexible coupling 

1 

Rack & pinion 

2 

Geared motor 

Figure 52: First generation fin oscillation device. 

The mechanism on the top layer of the rig is shown in Figure 53. 

100 mm 

Figure 53: Scotch yoke mechanism on the test rig. 

Page 74 of 220 Paul Riggs 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

The design has the advantage of being simple and reliable by design, and so less susceptible 

to errors in software and electronics. However, play in the scotch yoke mechanism could cause 

clipping of the sine wave output, and jarring of the rig, which would in turn cause unwanted 

noise in the force sensors. Another drawback to this design is the lack of feedback in the 

motor speed control, which means the oscillation frequency is a measured, rather than 

independent variable, and can drift over time for a number of electrical and mechanical 

reasons. Furthermore, the large mass of moving parts that accelerate and decelerate in every 

cycle could cause erroneous readings in the force sensors measuring the rig. 

4.3.4 Industrial DC Servomotor 

The next mechanism to be used for oscillating the fins was the fin actuator from the 

Bathymysis submersible. It consisted of a low-inertia geared DC motor driving an axle through 

a further reduction gear. The motor shaft was connected to an encoder, which allowed closed-

loop control of the fin position via custom-built control electronics and a PureBASIC5 program 

running on a PC. The design of the fin actuator design is covered in Appendix A.7 (page 186). 

The submarine fin actuator was used for some initial sets of experiments, but the PC-

dependent control system meant that it was very susceptible to communications glitches, 

which would occasionally cause the fin to stray temporarily from its intended path. The 

software was able to recover quickly from such problems, which were barely noticeable in the 

submarine application, but for experimental purposes, a more reliable actuation method was 

deemed necessary. 

4.3.5 Model Servomotor 

The final and most successful fin actuator, used for the all the experiments described in the 

following chapters, was based on a high-spec model servomotor. Despite the disadvantages of 

model servomotors discussed in Section 2.8.2 (page 46), a motor was sourced with sufficiently 

high performance to overcome the problems discussed. The fins were actuated by a Hitec HS

5945MG high speed servomotor, driven by a Pololu USC01A servo controller. The servo was 

capable of a maximum slew rate of 5.8 rads-1, and an output torque of 1.2 Nm. Complete 

specifications of both of these items can be found in 0. The controller was operated by 

custom-written software which allowed it to be calibrated, and to reproduce user-defined 

waveforms accurately. The range of waveforms was limited by the maximum speed and torque 

output of the servomotor. More discussion of its accuracy can be found in Section 6.3.1 (page 

131). 

5 www.purebasic.com. See Appendix F. 
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4.4 Fin Force Measurement Rig 

4.4.1 Introduction 

It was necessary to design a method for measuring the resultant forces from the fins as they 

were tested. The following measurements were considered vital to understanding how the fins 

were performing (illustrated in Figure 54): 

• Thrust - drag (x): The useful forward force produced by the fin 

•	 Lateral force (y): Force in the direction perpendicular to the flow, in the horizontal 

plane, resulting from the fin’s oscillation 

• Torque (T): the torque supplied by the drive system to oscillate the fin 

y 

x 

T 

Figure 54: Force and torque produced by the fin in motion. 

Torques about the other axes, and force in the z direction, have been neglected, as their 

magnitude was likely to be very small, tending towards zero in a symmetrical, well-adjusted fin. 

The system devised for measuring these loads consisted of an instrumented force platform, 

data acquisition equipment to take the readings, and software to link the elements of the 

system together. These components of the force measurement rig are described in the 

sections below. 

4.4.2 Force Platform Design 

A rig was designed to allow accurate measurement of the forces generated by oscillating fins. It 

was required to be versatile, allowing for a range of actuation methods. It needed to measure 

the primary forces applied to the fin actuator shaft, and the torque being exerted on it, over a 

wide range, and with a good degree of accuracy. 

The resulting design fulfilled these requirements. Its modular construction allowed the 

measurement range to be adjusted by making simple modifications to the rig’s geometry. 

Numerous mounting points made it simple to attach different types of fin actuator mecha

nism. The design was reconfigurable, allowing components to be mounted in different 

locations, and counterweights could be added and moved around to ensure the force sensors 

were correctly preloaded, and never overloaded. A diagram of the rig, produced from its CAD 

assembly is shown in Figure 55. 
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Figure 55: Force sensor assembly of fin test rig. 

4.4.2.1 Mechanical design 

The rig’s structure was built from 19 mm (3/4 inch) L-section and box-section aluminium. 

Two supporting beams spanned the test tank, and supported a rectangular test bed. The test 

bed rested on a single spike at its rear, which supported most of the weight of the test bed. 

The spike prevented translation of the bed in any direction, but allowed rotation, reducing the 

movement of the rig to the three rotational degrees of freedom. There were two bearings at 

the front of the test bed, on which the remainder of the test bed’s weight rested. One of these 

bearings rested on a single force sensor, pointing directly upward, the other rested on two 

more force sensors, pointing diagonally upward and toward each other at an angle of 45° 

(Figure 56). These three sensors constrained all three remaining degrees of freedom, such that 

any torque acting on the test bed about the x, y, or z axis caused a change in the readings of 
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the sensors. The torques were calculated using simple moment equations, and used to derive 

the forces acting on the fin suspended below the rig. 

F2 F1 F0 

Bearing B Bearing A 

Figure 56: Force sensor locations on force platform test rig. 

The rig was designed to be stiff enough to ensure any natural vibrations are of a far higher 

frequency than the forces being measured, allowing them to be filtered out. It was adjustable 

in several ways; the distance between the bearings could be changed, to vary sensitivity to 

torque about the x axis. The length of the rig in the x direction was also adjustable, changing 

the rig’s sensitivity to torque about the y and z axes. Furthermore, the position of the fin 

actuator could be varied, changing the mechanical advantage of forces being transferred 

between the fin and the sensors. 

4.4.2.2 Sensors 

Honeywell FSS1500-NSB force sensors were selected for force measurement in the test rig. 

They were small and low in cost, but accurate when amplified sufficiently. They consisted of a 

silicon-etched strain gauge in a rigid package, with a small ball bearing resting on the silicon 

surface, transmitting force to it. Internally, they were analogous to an ordinary Wheatstone 

bridge strain gauge circuit (Figure 57), which, when an excitation voltage was applied, pro

duced an output voltage proportional to the force being applied to it. The FSS1500 sensors 

had a measurement range of 1500 g (14.7 N). They were stable, robust, tolerant to overload

ing, and exhibited extremely low deflection (30 µm at full loading). Combined with the stiffness 

of the rig’s structure, this ensured any movement of the rig was kept to a minimum, avoiding 

the risk of resonance induced by repetitive forces acting on it. Further specifications of the 

sensors are included in 0. 

Figure 57: Honeywell FSS1500­NSB force sensor used in the fin test rig. 
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4.4.2.3 Sensor calibration 

To calibrate the force sensors, it was necessary to load the force sensors to approximately their 

maximum capacity. This required two calibration weights to be hung from specific locations 

on the rig. Taking the spike at the rear of the rig to be the origin, the forces acting vertically on 

the test bed were as follows (Figure 58): 

z 

y 

x 

F sa 

Fsb 

Fcb 

F cg 

Fca 

xcg 

xc 

x s 

­ys 

­yc 

yc 

ys 

Fo 

Figure 58: Diagram of vertically­acting forces on the test rig, used for moment calculations. 

Table 2 defines of the terms used: 

Fo Force the supporting spike exerts at the test bed pivot, located at the origin 

Fcg Weight of test bed, acting from its centre of gravity (negative) 

Fca, Fcb Calibration weights, acting at two predefined points on the test bed 

Fsa, Fsb Force of the sensors, acting from the two sensor locations at the end of the 

test bed 

xc, yc Calibration point coordinates 

xs, ys Force sensor coordinates 

xcg x coordinate of centre of gravity (y coordinate = 0) 

Table 2: Forces acting on test bed 

To simplify the resulting equations, all forces were defined as acting in the z direction. The rig 

was stationary, so the sum of all forces must equal zero: 

∑ F = Fca + Fcb + Fsa + Fcb + Fo + Fcg = 0 (32) 
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Likewise, the sum of moments about x must also equal zero: 

(Fca − Fcb ) yc + (Fsa − Fsb ) ys = 0 (33) 

And also the sum of moments about y: 

(Fsa + Fsb )xs + (Fca + Fcb )xc + Fcg xcg = 0 (34) 

These equations were used to calculate the forces present at the force sensors for given 

calibration weights. These in turn were used to determine the scaling factors needed to 

convert the raw sensor outputs into meaningful force measurements. Solving the equations for 

Fsa and Fsb gives: 

c + c c − c 
Fsa = 1 2 and Fsb = 1 2 (35) 

2 2 

Where the intermediate variables c1 and c2, represent the force on each sensor, due to the 

moments about the x and y axis respectively. They are defined as: 

(Fca + Fcb )xc + Fcg xcg (F − F ) y 
c1 = and c2 = ca cb c 

(36) 
− xs − ys 

The masses required for calibration were determined by solving equations (33) and (34) to 

give Fca and Fcb in terms of the other variables: 

c + c c − c 
Fca = 3 4 and Fcb = 3 4 (37) 

2 2 

Where the corresponding intermediate variables c3 and c4 are: 

(Fsa + Fsb )xs + Fcg xcg (F − F ) y 
c = and c = sa sb s (38) 3 4− xc − yc 

The force sensors were linear, so two readings needed to be taken to calibrate them; one at 

each end of the sensors’ range. To avoid the added complication and error of including the 

weight and centre of gravity of the test bed in the measurements, the bed was counterweighted 

until most of its weight was resting on the pivot point, with only a small force being exerted on 

the sensors. Then the lower calibration reading was taken. The upper reading was taken when 

known calibration weights were loading the force sensors close to the upper limit of their 

range (14.7 N). The small force exerted by the rig’s mass on the sensors was equal in both 

calibration measurements, so its exact magnitude and location could remain unknown 

without affecting the calculations. The geometry of the rig sensors and their loading forces is 

shown in Figure 59: 
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F2 F1 F0 

Fsa Fsb 

Bearing B Bearing A 

Figure 59: Test rig sensor loadings. 

The 45° angle of F1 and F2 to the vertical axis meant the desired calibration force at Fsa and 

Fsb was as follows: 

F = F and F = F 2 + F 2 (39) 
sa 0 sb 1 2 

Where ideally, F0 = F1 = F2 = 13.98 N, which was 95% of the maximum range of the FSS1500

NSB force sensors used in the rig. 

Therefore, from equation (39), Fsa ≈ 14.0 N and Fsb ≈ 19.8 N. These approximate values were 

used, along with the rig dimensions, in equations (37) and (38), to find the target masses for 

the calibration weights. Approximate values sufficed because when the actual calibration 

weights were selected, they were accurately measured, and their masses fed back into the 

calibration equations (35) and (36), to give true values for the forces exerted at the sensors. 

These values were then used to calculate calibration factors for each of the three force 

sensors, and ensure they provided accurate readings across their range. 

The following model was used to describe the behaviour of the force sensors and A-D 

equipment. Fs is the force exerted on the sensor, fcal is the sensor’s calibration factor, R is the 

raw reading given by the A-D equipment monitoring the sensor, and R0 is the offset; the 

reading given by the sensor when the rig was at rest. 

F sR = + R0 ⇒ Fs = fcal (R − R0 ) (40) 
fcal 

The offset value was applied to the raw reading before the calibration factor to simplify 

recalibration of the rig. The zero offset was likely to vary due to the effects of sensor drift, or 

changes to the weight distribution on the test bed caused by, for example, changing to a new 

fin. To negate these effects, new sensor offsets were calculated for each channel by taking an 

average of several raw readings while the rig was at rest, and this average was applied as the 

new offset, without affecting the calibration factor. 
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4.4.2.4 Fin force calculation 

The three force sensor outputs from the measurement rig are defined as F0, F1, and F2, as 

shown in Figure 56. In Figure 60, Fsaz represents the upward force acting on bearing A, and is 

the same as F0. Fsby and Fsbz are the horizontal and vertical components of F1, and F2, the 

forces acting on bearing B. These definitions of forces acting on bearing B are related by 

equations (42) and (43): 

F = F (41) saz 0

F + F 
F = 1 2 

(42) sby 
2 

F − F 
F = 1 2 (43) sby 

2 

The weight of the rig and fin can be neglected, since its effect is constant, and can be can

celled out by subtracting the readings from the rig at rest from all subsequent readings. 
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Figure 60: Diagram of forces acting on the test rig, used for calculating fin forces. 

The terms are described in Table 3. 

Fy Lateral force exerted by the water on the fin and vice versa 

Fx Thrust / drag force, acting in the direction of the water flow 

Tz Torque being supplied to the fin by the actuator mechanism 

Table 3: Forces acting on test bed 
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syF ) 
2 

( 21 
0 + 

When the rig is in equilibrium, the moments about x, y, and z must all be zero. 

Moment about x axis: 

(Fsaz − Fsbz ) ys + Fy z f = 0 (44) 

Moment about y axis: 

(Fsaz + Fsbz )xs − Fxz f = 0 (45) 

Moment about z axis: 

Fsby xs + Fy x f + Tz = 0 (46) 

Thus equations can be derived for obtaining the three measured fin loads Fx, Fy and Tz from 

the rig forces F0, F1 and F2: 

F + F 
(Fsaz + Fsbz ) ys (47) 

F = = x 
z zf f 

F + F 
( 1 2 − F0 ) ys(Fsbz − Fsaz ) ys 2 (48) 

F = = y 
z zf f 

F − F 
T = −F x − F x = 2 1 xs − Fy x f (49) z sby s y f 

2 

The implementation of these equations in the PureBasic test rig control program is shown in 

Appendix G. 

4.4.3 Data Acquisition Equipment 

The FSS1500 force sensors were connected to a set of instrumentation amplifiers, which 

provided them with an appropriate excitation voltage, and conditioned the output signals. The 

amplified analogue signals were then sent to Measurement Computing6 PMD-1208FS 

Personal Measurement Device, which was in turn connected via a UBS cable to a computer. 

The PMD’s functions could be called from LabVIEW, PureBasic, and most other modern 

programming languages. As well as eight channels of analogue to digital input, it has two 

analogue and 16 digital outputs. It is capable of sampling a single channel at up to 50,000 

samples per second, up to a maximum throughput of 150,000 samples per second. 

6 www.measurementcomputing.com 
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4.4.4 Rig Calibration Experiments 

The force sensors on the rig were calibrated by measuring their amplified outputs with the 

A-D equipment under no load, then loading them to their design maximum and taking 

another set of readings. This provided a zero offset value and a scaling value for each of the 

sensors, which was recorded and used in subsequent tests to convert the raw data from the 

equipment to meaningful force measurements. Calibration points were marked on the rig, 

from which known weights could be hung, to enable testing of the rig’s accuracy, and to 

facilitate recalibration if necessary, using the method described in Section 4.4.2.3 (page 87). 

4.4.4.1 Noise experiments 

After the individual sensors had been calibrated to provide accurate readings, it was necessary 

to test the rig’s ability to measure the forces and torques produced at the fin. The sensitivity of 

the rig was not in question, as its geometry was carefully calculated, and the selection of the 

force sensors made with this purpose in mind. However, the rig’s ability to measure accurately 

the conditions at the fin whilst rejecting noise from the fin actuator mechanism needed to be 

tested. 

At this stage in the rig’s development, the fin actuator was a scotch yoke mechanism, as 

described in Section 4.3.3 (page 73). Experiments were performed in which data was recorded 

from the rig as it ran at a range of frequencies, with no fin attached. As expected, noise was 

measured on the force readings, a sample of which is shown below. The following graph is for 

an oscillation frequency of 2.5 Hz, at an amplitude of 40° (80° peak-to-peak). The high 

amplitude was deliberately chosen to generate high levels of noise with which to test the noise 

reduction technique. 
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Figure 61: Noise reading from three oscillation cycles of the test rig. 

Figure 61 shows the noise output from sensor F0 for three cycles of the fin oscillation 

mechanism. It is possible to distinguish three similar cycles in the noise output, suggesting the 

noise was not entirely random, but in part caused by the movement of the fin mechanism 

itself. By superimposing noise readings from a number of consecutive cycles over each other, it 

is possible to see both a random and a repeating element to the noise (Figure 62): 

Figure 62: Superimposed noise readings from several cycles of the test rig. 

Noise that repeats predictably on every cycle of the fin oscillator could be cancelled by


subtracting the repeating noise pattern from all subsequent readings. Random noise produces


a steady average over a large enough number of cycles, and so could also be cancelled. Figure
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63 shows the result of this noise cancelling process. A sample of 100 cycles of the fin mecha

nism was recorded, and the raw data divided into cycles and plotted as a point cloud on the 

graph. The readings were combined using a moving average method; the resulting noise 

profile consisted of 200 points, each of which was an average of the data points closest to it. 

This is shown as a solid line shown on the graph. Next, a separate dataset of 20 cycles of the 

mechanism was recorded to simulate a fin test. The averaged readings from this data set are 

shown as a dashed line on the graph. The result of subtracting the 20 cycle from the 100 cycle 

dataset is shown on the lower of the two graphs. Ideally, this would be a flat line at zero, 

because no loading was applied to the fin axle for either of the reading sets. 

Simulated test Average noise (top) Raw data 

Noise after cancellation (bottom) 

Figure 63: Noise cancelling results, showing noise calibration data (top) and simulated test result 

(bottom). 

The method achieved a reduction of around 60% in peak-to-peak noise. This was less effective 

than had been hoped, as it still left a noise level comparable to the expected signal, making it 
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difficult to form conclusions about fin behaviour from the recorded outputs. The disappointing 

performance of the noise reduction method was due to the nature of the noise coming from 

the rig. Both cyclic noise and purely random noise would have been cancelled by the process 

described above, but the noise in question was neither entirely cyclic nor entirely random. It 

appeared to subtly change in amplitude and phase over a number of fin cycles, meaning the 

cyclic noise peaks did not line up accurately from one fin cycle to the next. Therefore subtract

ing one set of cycles from another left new peaks wherever the original peaks were out of 

alignment. 

4.4.4.2 Noise experiments after redesign 

It was apparent that using computational noise reduction alone could not produce clean data 

from the test rig design; further mechanical improvements would be necessary. First, the 

scotch yoke mechanism was lowered to bring it closer to the height of the force sensors. This 

reduced the amplification of the forces it generated by reducing the effective lever arm 

distance between the mechanism and the rig’s pivot point. Loose components were fixed 

securely to the rig, play in the mechanism was reduced as much as possible, and all the 

moving parts were greased to reduce friction. These improvements reduced the noise by 

approximately 50%, but, even in conjunction with post-experiment noise reduction, this was 

not enough to make the rig sensitive to the subtle changes in force produced by an oscillating 

fin. 
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As part of a major design overhaul, the scotch yoke mechanism was removed from the rig and 

replaced with a servomotor system as described in Section 4.3.5 (page 75). A test was per

formed near the maximum frequency and amplitude that the rig could reproduce. The graph 

in Figure 64 shows the improvement in noise level in comparison to Figure 63. Note that the 

scale is increased approximately tenfold in the y-axis to make the readings visible. 

Raw data Average noise (top) Simulated test 

Noise after cancellation (bottom) 

Figure 64: Noise cancelling results after rig redesign, showing noise calibration data (top) and 

simulated test result (bottom). 

The spread of raw readings in the upper graph shows the servomotor mechanism produces 

significantly less noise than the scotch yoke mechanism; around 8% of the level measured 

before. The raw data appears in horizontal stripes because the noise is sufficiently low in 

magnitude that the resolution of the A-D converter is visible. After noise reduction has been 

performed, peak-to-peak noise of around 4 units is visible, in the lower graph. Upgrading to 

the servo fin drive caused a dramatic improvement in signal noise over the scotch yoke 
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mechanism, ensuring that any noise remaining in the signal could be cancelled by averaging 

several fin cycles together. 

4.4.4.3 Experimental accuracy 

In experiments, noise at the level shown above equates to an error of up to 0.04 N at the force 

sensors, which, using the rig geometry used for the experiments in the following chapters, 

implies a worst-case error in instantaneous force measurement of 0.06 N at the fin. It is 

important to note, however, that the noise over several cycle averages to zero, so the mean 

thrust readings will be unaffected by this type of signal noise. 

4.4.4.4 Servo signal latency 

Servo signal latency was another aspect of the rig that required calibration. Sending signals 

from the control software to the servo controller via a serial connection incurred a time delay. 

Since the delay was consistent between experiments, it could be accounted for in software. 

The easiest way to calculate the latency was to make the rig follow a square wave and to 

monitor the output angle and measure the delay. Figure 65 shows the latency to be 65 ms. 
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Figure 65: Servo signal latency. 

The servo control loop ran independently within the rig control software as a high-priority 

thread, and used timing data from the PMD-1208FS to ensure the motion control and data 

acquisition parts of the software operated in synchrony. 
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4.4.4.5 Fin orientation 

The geometry of the rig was adjustable several ways, to allow changes to be made to its 

sensitivity, as described in Section 4.4.2.1. Its design allowed greater extension in the x 

direction than the y direction. In the first round of fin tests; those described in Chapter Five; 

the fin under test was orientated with its chord parallel to the x axis. The experiments were 

successful, and all forces generated were within the measurement range of the sensors. The 

following round of experiments, documented in Chapter Six, generated higher forces. Early 

trials of these tests caused the rig to overload, and fail to collect a complete dataset for some 

of the fins. An example of a failed experiment set is shown in Figure 66, where many of the 

high thrust-producing tests have been aborted automatically due to excessive force generation. 

Figure 66: Example of an incomplete dataset due to rig overloading. 

Modifying the rig geometry so that the distance between the bearings was at its maximum was 

not enough to keep the forces within the allowable limits. However, since the lateral forces 

generated by fins are generally larger than the thrust, turning the fin through 90°, parallel to 

the y axis, meant the largest forces were creating a torque about the y axis instead of the x 

axis, such that increasing the length of the rig in the x direction reduced the forces at the 

sensors to an acceptable level. 

To test the effect of rotating the fin on the results, two experiment sets were carried out, 

identical in every respect except the orientation of the fin. The fin was parallel to the y axis in 

both experiments, facing in the y direction for one, and the –y direction for the other Figure 

67. 
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Figure 67: Difference caused by change in fin orientation, parallel to y axis (left), and –y (right). 

Disappointingly, the experiments revealed a difference between the two fin orientations. Figure 

68 shows the difference between readings in the two experiments as a percentage of the range 

being measured. Most of the tests in each experiment exhibit a difference of less than 12%. 

The tests with the largest discrepancies (12-26%) are those in the high amplitude, high 

frequency region. In these tests, repeatability is impaired by the servo operating close to its 

performance limits, and being less able to follow a waveform to the same accuracy as in the 

lower frequency and amplitude experiments. 

Figure 68: Difference between orientation experiments as a percentage of maximum reading. 
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A possible reason for the discrepancy was the indirect way in which the forces were measured. 

Since it was not possible to directly measure the forces being generated by the fins, forces had 

to be derived from other variables (see Section 4.4.2.4, page 82). Thrust, for example, de

pended on measurements from all three force sensors, the dimensions of the rig, and the 

positions of the fin and force sensors all being accurately known. Orientating the fin in the 

opposite direction meant these variables were combined in a different way, such that deviation 

in any of the variables could introduce an error. Another source of asymmetry in the readings 

could have been the alignment of the two opposing force sensors (Figure 56, page 78); if they 

were not located correctly, at 45° to the horizontal, the vertical force applied to them would 

not have been divided equally between them, and an asymmetrical response to loading would 

result. 

The difference in sensitivity brought about by changing the orientation of the fin was inherent 

to the rig’s design, and would have been difficult to fix without a major revision. Since the rig 

was capable of gathering consistent readings for any one fin orientation, the best response to 

the problems described here was to ensure the rig was correctly calibrated, and use it in one 

orientation only. To maintain a high level of consistence and accuracy, all of the results 

included in this thesis for comparison with each other were obtained in this way. 

4.4.4.6 Calibration between experiments 

The test rig’s force sensors were affected by gradual zero drift. Over the course of a single 

experiment its effect was negligible, but when running a set of many experiments over several 

hours, the effects became significant and had to be mitigated. The solution was to add a 

routine to the rig control software which took 10 seconds’ worth of samples before each 

experiment, while the rig was at rest. The average of these readings was then taken as a zero 

point for the experiment. Figure 69 shows the zero drift over a set of experiments lasting 

approximately 6 hours. Individual experiments in this set took between 3 and 30 seconds, 

depending on the frequency of oscillation. 
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Figure 69: Zero drift over a large number of experiments. 

As a proportion of the total range of the readings, the error was small, no more than 0.2 %. 

However, it was important to account for, because some of the average thrust readings were 

also very small, and so their accuracy would be affected by the error to an unacceptable 

extent. 

4.5 Test Rig Software 

The software used to gather data and control the rig was written in PureBasic. It performed 

several functions, which are described below. 

4.5.1 Motion Control 

4.5.1.1 Asymmetry 

The rig software communicated with the servo controller via a serial connection, and repro

duced waveforms at different frequencies and amplitudes. Square, triangle, and sine wave 

functions were programmed, but any waveforms that could be defined mathematically as a 

function of the phase angle were reproducible. An asymmetry factor was built into the 

program; it was a floating-point value between 0 and 1, which adjusted the portion of time 

spent in the first and second halves of the waveform. An asymmetry value of 0.5 resulted in a 

symmetrical wave. Figure 70 shows a sine wave adjusted with an asymmetry factor of 0.25. It 

therefore spends 25% of the cycle time travelling in one direction, and 75% in the other. 
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Figure 70: Asymmetrical sine wave. 

4.5.1.2 Ramp time 

When a pitching fin starts to oscillate, it accelerates in a short time, pushing hard against the 

stationary water surrounding it. The resulting peak of thrust or lateral force is often much 

higher than the steady-state value after a number of cycles have taken place, and a more 

consistent flow pattern is established. For this reason, a ‘ramp’ facility was added to the control 

software, allowing the wave to start with an amplitude of zero, and increase to a target 

amplitude over a number of cycles. This allowed higher final amplitudes to be reached without 

overloading the force sensors during start-up. Figure 71 shows a sine wave actuation profile 

with a ramp of three cycles. 
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Figure 71: Ramped start­up example. 

4.5.2 Data Acquisition 

Another important function of the test rig control software was to receive the readings from 

the rig’s sensors, interpret them, and record them to files. The data acquisition device (Meas

urement Computing PMD-1208FS, described in Section 4.4.3, page 83) was set to read 1000 

samples per second from each of the data channels into a memory buffer large enough to 

store two seconds’ worth of samples. This buffer was read by the program approximately every 

100 ms, ensuring a continuous stream of data, and the raw data was then processed by the 

software. Firstly the forces on each sensor were calculated using the calibration factors derived 

from earlier experiments. These sensor forces were then converted to forces in the x and z 

directions at the force sensor locations. Then the torque on the rig about the three axes was 

calculated, and the forces and torque at the fin derived from them. 

Each set of samples was recorded with a time stamp from the data acquisition device’s 

internal clock, and a phase angle, which represented a position in time along the target 

waveform. In later experiments the rig was upgraded to accommodate a potentiometer 

connected to the axle (Section 6.2.2.1, page 124). This detected the fin’s position, and the 

acquisition software applied a scaling factor to convert the raw reading converted to a position 

in degrees. 
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For every new fin test, a CSV (comma separated variable) file was created, with a header 

containing all the details of the test. The information shown in Table 4 was recorded in the 

header of each file. 

Variable Description 

Date Time and date that the experiment was carried out 

FileVersion File version number, allows analysis software to read the file in the 
correct way 

Tx, Ty, Tz Torque readings while the rig is at rest, for x, y, and z axes (Nm) 

Angle Zero angle reading (degrees) 

XSensor, YSensor x and y positions of force sensors, allowing for variable rig geometry 
(m) 

XFin, ZFin x and z positions of fin, allowing for changes to rig geometry and 
axle length (m) 

FinDirection Direction of the fin at rest (rads) 

Waveform Number representing sine, triangle or square wave 

WaveCenter Wave centre location from 0 – 1, allowing asymmetrical waves 

RampCycles Number of ramp cycles before full amplitude is reached 

Experiment Y/N value, identifying dataset as part of an experiment series, or a 
one-off test. 

FinCycles Number of fin cycles in experiment 

Frequency Oscillation frequency (Hz) 

Amplitude Oscillation amplitude (degrees) 

Table 4: File header variables. 

Table 5 shows the data columns contained within the main body of the CSV file. 

Variable Description 

Time Time from start of test (ms) 

Channel0 ­
Channel3 

Raw integer readings from A-D channels 

F0, F1, F2 Force readings from sensors (N) 

Angle Angle reading from potentiometer (degrees) 

Tx, Ty, Tz Torque readings about rig axes (Nm) 

Phase Oscillation phase angle / 2π 

TargetAngle Target fin angle (degrees) 

Thrust, Lateral Force readings at fin (N) 

Torque Torque readings at fin (Nm) 

Table 5: CSV data file columns. 

Part of an example CSV data file can be found in Appendix H. 
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As well as the data file, the software produces a log file, in which each line summarises a 

single oscillation of the fin, with each of the variables shown in Table 6: 

Variable Description 

FileNumber Number of corresponding CSV data file 

Frequency Oscillation frequency (Hz) 

Amplitude Oscillation amplitude (degrees) 

Cycle Number of fin cycle 

TxAvg, TyAvg, 
TzAvg 

Average torque readings about rig axes (Nm) 

TxRMS, TyRMS, 
TzRMS 

RMS torque readings about rig axes (Nm) 

OK Records if error condition has been triggered by force over/under
load during test 

Table 6: Log file columns. 

4.5.3 Automation 

Large numbers of individual fin tests are required to build up a profile of a fin’s performance. 

The test rig control software allowed the user to specify any number of tests to be carried out 

sequentially, with programmable delays between each one. Each test can be defined by the 

parameters shown in Table 7. 

Variable Description 

Command Command type: Zero sensors, wait, or perform a test 

SaveFileName Filename to identify experiment set 

Frequency Oscillation frequency (Hz) 

Amplitude Oscillation amplitude (degrees) 

Oscillations Number of oscillations in this test 

Waveform Number representing sine, triangle or square wave 

WaveCenter Wave centre location from 0 – 1, allowing asymmetrical waves 

RampCycles Number of ramp cycles before full amplitude is reached 

Wait Length of pause to be used between experiments (s) 

Table 7: Command list parameters. 

4.5.4 Rig Protection 

It was important to keep loading on the force sensors within their specified measurement 

range of 0 - 14.7 N. The sensors’ accuracy could only be relied upon when they were being 

used within their design parameters, and damage to the force sensors could result from 
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extreme overloading. The sensors were able to withstand to ten times their upper limit, but if 

the rig were to rise off the force sensors and drop back onto them from a height of more than 

a few millimetres, the spike in force resulting from its rapid deceleration could easily have 

exceeded this limit. Therefore protecting the sensors from under-loading was equally impor

tant. 

The control software continually monitored the forces being applied to the sensors, even 

between fin tests. If any sensor detected a potentially dangerous over or under-load, for 

example while making adjustments to the rig, an audible alarm was sounded to warn the user 

to take extra care. If the alarm occurred during the course of an experiment, for example by 

using a high amplitude setting with a stiff fin, the experiment was automatically aborted. The 

fin was gently returned to its centre location by the control software, and an ‘error’ tag was 

appended to the CSV data file and the experiment log, so that the problematic test would not 

be processed by the analysis software. The test rig software then continued with the remaining 

experiments in the set. 

4.6 Test Environment 

4.6.1 Water Tank 

Investigating the performance of flexible fins required a method of operating fins in water, 

under known conditions. The tank used for the experiments in Chapter Five and Chapter Six 

of this thesis measured 2 x 1.5 m in area, and 1.5 m in depth. The test equipment was 

suspended above the water from two U section aluminium bars, below which a frame was 

constructed from Dexion7 bars to support the force measurement rig, shown in Figure 72. The 

Dexion frame was triangulated in order to provide a very stiff platform from which to measure 

the forces generated by the fin. 

www.dexion.com 

Page 98 of 220 Paul Riggs 

7 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

Figure 72: Structure supporting test equipment over tank. 

A large tank was selected so that edge effects would have a negligible influence on the 

performance of the fin, and that fin large-scale currents would not become established over 

the course of a fin test. Currents would have the effect of reducing the thrust generated by the 

fin, since it would no longer be operating in a bollard state, but in flowing water. The tank’s 

natural period of oscillation was slow, at around 1.7 seconds, and the volume of water 

sufficiently large that the disturbance caused by each individual fin test was barely visible after 

a period of 30 seconds. The energy imparted by single fin tests caused only localised distur

bance to the water, but in order to avoid the possibility of multiple experiments constructively 

adding to a standing wave, a delay was observed between consecutive fin tests, and is dis

cussed further in Section 4.7.2 (page 104). 

4.6.2 Static vs. Flow Testing 

Most of the investigations summarised in Chapter Two were performed under flow conditions. 

In order to fully examine the performance of a fin, it is important to perform tests at a range of 

flow velocities. A fin’s thrust and efficiency are highly dependent on the interactions between 

vortices that are shed from its leading and trailing edges, and in turn these are affected by the 

speed at which water flows past the fin. 

Many previous studies have focussed on the role of Strouhal number in determining perform

ance and efficiency, and this is a term that is only applicable to fins with non-zero forward 

velocity. Some studies aim to test fins or other oscillating devices under conditions analogous 

to self-propelled free swimming. In these cases, the flow velocity is adjusted to create a steady 

state in which no net thrust is being generated, because the thrust and drag are balanced. 
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Measurements are then carried out at this velocity. While this method offers a close approxi

mation to free swimming, it is not entirely equivalent, since the imposed velocity is constant, 

whilst the velocity of the body under natural conditions may not be. 

Efficiency is another term that loses some of its meaning when forward velocity is zero, 

because useful energy out requires a force and a distance moved. There are other methods of 

quantifying effectiveness at converting energy to thrust; for example, bollard efficiency and 

thrust-to-power ratio (see Section 2.2.3, page 25). 

Useful information can, however, be gained from tests under static, or ‘hover’ conditions, and 

there are several reasons why static water has been used in the experiments in this thesis. The 

starting point for this investigation was a finned robot submarine, in which oscillating fin 

thrusters were used for propulsion and manoeuvring. In the case of a fin being used to propel 

a larger object through water, the object’s drag and inertia works against the thrust generated 

by the fin, so that it will never reach, or even come close to a ‘free swimming’ state. Instead, it 

will spend most of its time operating closer to a ‘bollard’ state; providing thrust to manoeuvre 

the submarine by pushing against stationary or slow-moving water. The generation of thrust 

for low-speed manoeuvring was the type of performance of most value on the Bathymysis 

project, and receives less coverage in existing literature than the performance of flexible fins 

under flow conditions. 

For this reason, optimising fin design to achieve the greatest static thrust from a given fin size 

for the least energy seemed an appropriate course of action for this thesis. This decision 

reduced the number of variables affecting the fins’ performance, whilst keeping the study 

relevant to its original inspiration; the development of oscillating fin propulsors for a small 

undersea vehicle. 

Neglecting flowing water tests is of course, at the expense of being able to fully characterise a 

fin’s behaviour over a full range of flow conditions, but while such investigations are beyond 

the scope of this thesis, they are discussed in Chapter Seven, ‘Summary of Conclusions and 

Future Work’. 

4.7 Experimental Procedures 

4.7.1 Number of Cycles 

There is always some variation in the production of forces between consecutive fin cycles in a 

single test. To gain an understanding of the performance of a fin under a given set of condi

tions, it is necessary to take an average reading from a number of fin cycles. The more cycles 

are recorded, the more the effect of anomalous readings can be reduced. There are, however, 
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drawbacks to conducting fin tests over a large number of cycles in static water, so the number 

of cycles to include in the data analysis is a compromise accounting for several factors. 

4.7.1.1 Ramp time 

Ramp time is described in Section 4.5.1.2, (page 94). A ramp time of three cycles was found 

experimentally to be long enough for all of the fins to reach their maximum amplitude at 

maximum frequency without overloading the force sensors. A further buffer of two cycles was 

added after maximum amplitude had been reached, to account for any residual effects of the 

ramp cycles on the movement of the fin, for example in the propagation of waves down the fin 

body, which never exceeded more than two wavelengths under any of the experimental 

conditions. For these reasons, the force data from the first five cycles of each fin test were 

ignored. 

4.7.1.2 Repeatability of results 

Figure 73 illustrates the effects of changing the number of fin cycles included in each test. The 

graphs show data from a full set of tests on a NACA 0012 fin in stationary water. They are 

analysed with slightly different criteria; graph a) only shows thrust data from a single oscilla

tion in each test. While the underlying trend of the data is visible, there is significant scatter in 

the results. Graph b) shows the same set of tests analysed over 5 cycles of the fin, reducing the 

scatter significantly. The final graph c) shows the data averaged over 10 cycles of each test, 

reducing the scatter still further. 
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a) b) 

c) 

Figure 73: Comparing results gathered from a) a single oscillation, b) 5 fin cycles c) 10 cycles. 

Further analysis of groups of test data was carried out, to ascertain the optimal number of fin 

cycles to measure. The mean thrust readings from a single fin cycle differed from those taken 

over 10 cycles with an average deviation of 31%. The largest deviations occurred in the fin 

tests producing the lowest thrust. The average error in thrust for all tests was 0.009 N. A 

similar calculation on thrust readings averaged over 5 cycles showed a deviation of 3% when 

compared to the 10 cycle results; a difference in thrust of 0.002 N. The difference in mean 

deviation between tests of 10 cycles and more was found to be negligible. 
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4.7.1.3 Large­scale currents 

Since an oscillating fin imparts momentum to the surrounding fluid, large-scale currents can 

build up over time. Water flows past the fin, around the edges of the tank, and back to the 

front of the fin. The movement of water means the test is no longer being carried out in a 

bollard condition, but in a state of unknown flow velocity. In a finite tank, it is impossible to 

eliminate large scale currents from tests altogether, but if allowed to develop to a significant 

level, the induced flow can influence results to an unacceptable extent. The effects of large-

scale currents on the measurements taken in the following chapters were mitigated in the 

following ways: 

•	 The tank in which the experiments were performed was at least an order of magni

tude greater than the size of the fin in every dimension. The large volume of water 

minimised the effect of the moving fin. 

•	 Individual fin tests were kept as short as possible; enough cycles were recorded to 

provide reliable and repeatable data, but no more. 

•	 Residual currents, which were of the order of millimetres per second, were given time 

to dissipate before the next fin test began, so that the influence of consecutive tests 

would not be combined, and allow flow to build up over a sequence of tests. 

4.7.1.4 Framing the fin tests 

Figure 74 shows the constraints on choosing a safe timeframe for fin tests. The first five fin 

cycles are ignored because of the effects of ramping the fin’s amplitude, and the number of 

cycles in the test is selected bearing in mind the consequences of both too many, and too few 

fin cycles being used. 

Ramp 
cycles Steady flow 

Safe experimental zone 

0 5 10 15 20 25 30 
Fin cycles 

Figure 74: Safe experimental zone 
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The experiments in Chapter Five used a sample size of 15 cycles, but this was reduced to 10 

cycles in the second round of experiments, after it was shown that the change could be made 

with a no discernible effect on the clarity of the data. 

4.7.2 Delay Between Experiments 

Each automated test sequence included delays of 90 seconds between consecutive fin tests, to 

allow vortices introduced to the tank to dissipate to a level where their effect was not felt 

during the next fin test. It also prevented the energy imparted from multiple tests building up 

and causing large-scale currents or standing waves in the tank. The figure of 90 seconds was 

chosen as a compromise, to include a large enough safety factor to ensure no disturbance 

remained in the water, yet not so long as to make long successions of fin tests impractical. 

4.8 Data Analysis 

After a set of data had been gathered from the test rig, further processing was still required. 

The next stage of the analysis used a set of MATLAB programs to interpret the data files. 

Their roles are discussed in this section. 

4.8.1 Summarising Data 

The test rig produced a data file containing thousands of samples for each individual fin test, 

so a very large quantity of data was produced in each experiment set. To speed up the process 

of analysing the data, each new dataset was processed in a MATLAB program after it was 

obtained from the rig. The program summarised the data and saved key values and averages 

to a smaller file, which could then be used to plot graphs and conduct further analysis, 

without having to refer to the unwieldy original dataset. 

The program’s first task was to recalculate all of the measured variables from the raw data 

stored in the file. Although the data-gathering software performed these calculations while 

experiments were taking place, the ability to regenerate the same results post-experiment 

allowed different analysis methods to be tried without having to run sets of experiments again. 

Access to the raw data proved very useful when a bug was discovered in the data-gathering 

software, which caused small errors in the force calculations. It allowed old data to be 

recalculated correctly after the experiments had taken place. 

After recalculating the variables, the MATLAB program analysed a number of complete fin 

cycles from each experiment. The ‘ramp’ cycles, where the fin amplitude was being gradually 

increased, could be eliminated at this stage, so that the cropped datasets represented the fins’ 

performance in a steady state. 
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Average readings were then taken for a number of variables in the dataset. The list of data 

recorded in each summary file is shown in Table 8. 

Variable Description 

Frequency Oscillation frequency. 

Target amplitude Nominal oscillation amplitude. 

Actual amplitude Actual oscillation amplitude, based on measured angular 

displacement. 

Mean thrust Mean force in the direction of the fin’s centre of oscillation. 

Mean absolute lateral force Mean absolute force perpendicular to the thrust axis. Absolute 

values are used because a mean value of approximately zero 

would be expected for all symmetrical fins. 

Power Mean power applied to the fin, calculated from the change in 

measured angle and the instantaneous torque. 

Virtual power Power calculated using the target angle rather than the meas

ured angle, for comparison with the other power variable. 

Thrust / power ratio Mean thrust per unit power. 

Mean direction of thrust Mean angle at which thrust is generated; usually similar direction 

of the centre of oscillation, but tends to deviate from this at low 

frequencies and amplitudes. 

Total mean force Mean force in the direction of mean thrust. 

Mean angle deviation Mean deviation of the measured angle from the target angle. 

Torque offsets Offsets applied to the torque readings when rig is zeroed at the 

start of each individual test. Interesting for measuring sensor 

drift over a series of experiments. 

Table 8: Data recorded in results summary files. 

Another function of the program was to eliminate bad data. When individual fin tests in a 

series were aborted due to excessive force, the fin was brought to rest, but data was still 

recorded for the intended duration of the test. When this happened, the data file was tagged 

with an error message, so that when the data set was analysed, the flawed file could be 

skipped. This resulted in a gap in the summary data, but since very few fin tests were aborted 

due to overloading, and the data are closely spaced, this did not cause any problems. 
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4.8.2 Plotting Graphs 

Another set of programs were created to present the data in graphical form. MATLAB includes 

a range of tools to visualise data in two and three dimensions. 

4.8.2.1 3D surface and contour plots 

3D surface plots were used extensively to provide a graphical representation of test data from 

an entire set of experiments, most commonly for showing the response of different variables to 

frequency and amplitude. Programs were written to display most of the variables in Table 8 in 

this way, and are used throughout this thesis. The source data used to create the 3D surface 

are shown as circular points, in blue where colour is used. 

3D graphs provide a striking display of the trends in data, but can lack clarity in situations 

where individual values need to be discerned. In these cases, contour plots have been 

included, to show the three-dimensional data in an unambiguous, 2D form. 

Figure 75: Examples of a surface plot (left) and contour plot (right). 

Both of these plotting methods can cope with unevenly spaced data, and when individual data 

points are missing, for the reasons described in Section 4.8.1 (page 104), a continuous surface 

or contour space can still be produced, using linear interpolation. Actual data points are 

displayed as small circles on 3D plots, and as dots on contour plots. This allows the viewer to 

see where data has been interpolated. Figure 75 shows the same data displayed as a 3D 

surface and contour plot. 
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4.8.2.2 Force traces 

A different kind of visualisation was necessary to show the force data for individual fin tests at 

a given frequency and amplitude. The ‘force trace’ graphs used in this thesis were developed 

using MATLAB to represent how the forces produced by a fin varied throughout an average 

cycle. A typical force trace, with its features labelled, is shown in Figure 76. The thin, faint line 

shows how the instantaneous force generated by the fin varied over a number of cycles. The 

thick line shows an average force trace over a number of cycles. Black dots along the average 

force trace occur at regular intervals in time, and give an indication of whether the force is 

changing rapidly or slowly. Other symbols mark points along the average cycle trace, and are 

described in the figure. In the cycle start marker, the largest circle denotes the start point, and 

the diminishing circles indicate the direction of travel. 

Cycle start Quadrant marker Half wave marker 

Time marker Average force Instantaneous force 

Figure 76: Example of a force trace for a hard compound biomimetic fin, 3.75 Hz, 10° amplitude. 
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Chapter Five


NACA vs. Biomimetic Fin Experiments


5.1 Introduction 

The hypothesis guiding the experiments within this thesis was introduced at the end of 

Chapter Two. It was arrived at following a review of literature in the field, and identifies an 

area of research not covered by previous published investigations. The experiments described 

in this chapter were designed as a first step towards answering the questions posed by the 

hypothesis. 

This was the first complete set of experiments performed with the equipment described in 

Chapter Four. A standard, aerofoil-shaped fin was tested at a range of frequencies and 

amplitudes against an alternative biomimetic design. 

5.1.1 Selection of Fin Profiles 

5.1.1.1 NACA 0012 fin 

The NACA 0012 aerofoil was chosen as a benchmark fin profile for the following reasons. Fins 

of the NACA four-digit family are ubiquitous in studies of aero- and hydrodynamics, and have 

been for many decades. Several more complex methods of defining aerofoil shapes exist, but 

are mostly intended for specific applications within the field of aeronautical engineering. Four-

digit NACA designations are the simplest, most widely understood framework for aerofoil 

design. NACA 0012 and NACA 0014 fins were used for all the studies reviewed in Chapter 

Two, in which an aeronautically-derived fin profile was tested. 

As described in Section 2.6 (page 36), foils within the NACA 00xx subset are symmetrical, with 

the last two digits referring only to the thickness of the foil as a percentage of its chord length. 

A consequence of this method of definition is that all NACA 00xx fins share a common 

stiffness profile, multiplied by a scale factor. 

The difference in thickness between the NACA 0012 and NACA 0014 foils is 16.7%, which 

equates to a much larger difference of 58.8% in flexural stiffness. Preliminary tests with the 

moulding resins to be used in the experiments had revealed the stiffness of the most flexible 

readily available silicone resin, and therefore the lower limit of fin stiffness that was practical 

to produce. So as not to limit the stiffness of the resulting fins at too high a value, the 
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NACA 0012 fin was selected, because it was the thinner, and therefore more flexible of the 

two foil designs. 

5.1.1.2 Biomimetic fin 

In order to test the hypothesis proposed at the end of Chapter Two, a biomimetic fin design 

was required. The aim was not to produce an optimal design for the intended application, but 

to make a rational selection from the available data, and use it to produce a fin of biomimetic 

origin, for comparative testing against the NACA fin. 

The decision was made to mimic the entire body of a fish rather than a single fin. Although an 

oscillating propulsor would most likely be deployed as an appendage to a waterborne craft in 

the same way that fish employ their fins, fish are not analogous to submarines. Many, like the 

pumpkinseed sunfish, use their pectoral and other ancillary fins for low-speed manoeuvring, 

but when extra exertion is required, use their caudal fins and entire bodies to generate thrust. 

The goal of generating thrust with a simple, homogenous flexible fin did not lend itself to 

mimicry of single fish appendages, which are very intricate in structure, as was seen in the 

dogfish dissection discussed in Section 3.3 (page 65). Since the fin was to be actuated in a 

pitching-only mode, a carangiform swimmer seemed a good choice of fish to mimic. 

The fin was to be actuated from a rigid axle, the same as the NACA fin, allowing no lateral 

movement of the leading edge. Therefore it was to move in approximation to a carangiform 

swimmer, whose head travels almost in a straight line, with undulatory waves propagating 

down the body, increasing in amplitude toward the tail. 

Of the carangiform swimmers, one specific species came to light, which had an accurately 

measured and complete stiffness profile presented in existing literature (McHenry, et al., 1995). 

Pumpkinseed sunfish (Lepomis gibbosus, shown in Figure 77), are carangiform swimmers, but 

also employ labriform swimming; that is, swimming using only their pectoral fins. They employ 

this propulsion method when manoeuvring at low speeds, and do so with considerable 

efficiency (Jones, et al., 2007). 
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Figure 77: An adult pumpkinseed sunfish.8 

The dataset was selected for use in the biomimetic fin design, and used in the experiments 

described below. 

5.2 Methods 

5.2.1 Fin Designs 

The two fin shapes used in this set of experiments were a standard NACA 0012 aerofoil and a 

biomimetic fin designed to mimic the flexural stiffness profile of a pumpkinseed sunfish 

(Lepomis gibbosus). The two fins were of similar volume, identical in material, and were made 

using the CNC mould technique described in Appendix D.4 (page 206). Both had a length and 

height of 120 mm, since previous work has identified an aspect ratio of 1:1 as being optimal 

for efficiency (Hobson, et al., 2003). The dataset used for calculating the biomimetic stiffness 

profile came from a study in which the flexural stiffness (EI) of a pumpkinseed sunfish was 

measured at points along its chord (McHenry, et al., 1995). Figure 78 shows the dataset from 

the study in its original form. 

Image provided with permission from NYSDEC. 
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Figure 78: Sunfish stiffness data (McHenry, et al., 1995). 

A cubic function was fitted to the logarithm of these stiffness measurements, and used to 

calculate the thickness profile of the biomimetic fin. The cubic function was as follows: 

log(EI ) = 9.6598x 3 − 22.006x 2 +10.192x − 4.1127 (50) 

Where x is the axial position along the fin, from 0 to 1 (front and rear respectively). E is 

Young’s modulus, a basic property of the moulding resin, measured in Section 3.1 (page 57), 

and I is the second moment of area, defined for a rectangular cross-section as: 

bd 3 

I = (51) 
12 

Where b is breadth, in this case the height of the fin, and d is the fin’s depth, or thickness. The 

fin's thickness was varied along its chord such that its flexural stiffness EI was proportional to 

that of the sunfish. A factor of 14 was applied to the stiffness data, to make the biomimetic 

fin’s width comparable to that of the NACA fin (i.e. the biomimetic fin was 14 times stiffer than 

the sunfish). 

It is reasonable to assume the front 10% of the sunfish is not optimised for locomotion to the 

same degree as the rest of its body, as there are many other structural and functional de

mands on the fish’s head that must take precedence. The priority in mimicking the stiffness of 
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the sunfish was to create a good approximation in the biomimetic fin in the region behind the 

axle, which actuates the fin from the 0.1 chord point. 

Stiffness data was absent from McHenry’s paper for the anterior (front) portion of the fish, up 

to the 0.1 chord point, so the profile in this section was extrapolated from the existing data 

using the cubic function described above. However, the extrapolated data left sharp corners at 

the fin’s leading edge, forming an unnatural shape, likely to introduce unnatural turbulence 

into the flow over the rest of the fin (see Figure 79). Since sunfish do not have a ‘leading edge’ 

to mimic, at this point the sunfish analogy could be carried no further. For the purposes of the 

fin mould, it seemed appropriate to depart from the extrapolated data between the 0 and 

0.025 chord points, and to round the corners to create a more natural profile. This also 

facilitated the CNC machining and moulding processes. A radius of 3 mm was chosen as a 

compromise between leaving unnaturally sharp corners at the leading edge, and straying too 

far from the extrapolated data being used to construct the fin. 

R: 3mm 

Figure 79: Biomimetic fin profile before (top) and after (bottom) smoothing. 

Although the aim of the exercise was to mimic the body stiffness profile, and not the shape of 

the sunfish, the sunfish data produced a more fish-like shape, thicker around the midsection 

and thinner towards the trailing edge than the aerofoil-shaped fin. Figure 80 shows the two fin 

profiles side by side, and the difference between them. 

Figure 80: Biomimetic and NACA 0012 fin profiles. 
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Figure 81 shows how the second moment of area (I) varies along the chord length for both of 

the fins. 
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Figure 81: Calculated 2nd moment of area of fin profiles. 

Figure 82 shows the flexural stiffness (EI) of the two fin designs, and includes the original 

sunfish stiffness data for reference. 
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Figure 82: Flexural stiffness of fin profiles, and source data. 
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5.2.2 Experimental Methods 

Each fin was submerged in the static water tank described in Section 4.6.1 (page 98), with the 

centreline of the fin at a depth of 0.2 m, and the axle protruding above the surface. The fin 

was oscillated about its axle with a sinusoidal angular displacement, at a range of frequencies 

and amplitudes. The fins were actuated by a Hitec HS-5945MG high speed servomotor, driven 

by a Pololu USC01A servo controller, as described in Section 4.3.5 (page 75). The motion was 

purely a pitching oscillation; no lateral motion was imparted, and the axle was constrained 

such that no passive lateral motion could take place. This was so that the effect of the fin’s 

compliance on its lateral motion, and consequently its performance, could be observed. 

The experiments consisted of a series of tests at centre-to-peak amplitudes ranging from 3-18° 

in steps of 3° and frequencies from 0.5-5 Hz in steps of 0.5 Hz. Tests were carried out 

automatically, with a pause of 60 seconds between each one, to allow disturbances in the 

water to dissipate before more measurements were taken. Each test lasted for 20 cycles of the 

fin, and the thrust, lateral force and torque were recorded at a sample rate of 1000 Hz for the 

test’s duration, using the equipment described in Section 4.4.3 (page 83). One of the aims of 

the setup was to avoid wall effects, and produce results as close as possible to those that 

would result from experiments in an infinite body of water. From the analysis of individual fin 

tests, 20 cycles was determined to be long enough for the thrust produced by consecutive fin 

cycles to stabilise, but not so long that significant large-scale currents could develop in the 

tank, giving the effect of flowing water. The first 5 cycles of each fin test were neglected, as the 

amplitude was gradually ramped up from zero during this period, to avoid the large transient 

force spikes associated with suddenly beginning oscillation at high amplitudes. Further 

information on the experimental procedures observed can be found in Section 4.7 (page 100). 

Each test started with the fin in a central position, pointing along the axis in which thrust was 

to be measured. A complete fin cycle was taken to be the time between consecutive zero 

crossings of the fin axle in the same direction. After the full set of tests had been completed, 

the data were analysed in MATLAB, using the methods described in Section 4.8 (page 104). 

5.3 Results 

5.3.1 Mean Thrust 

There was a considerable difference in average steady-state thrust between the NACA and 

biomimetic fins (Figure 83). Both fins produced maximum thrust at maximum frequency and 

amplitude, but the biomimetic fin’s thrust was approximately double that of the NACA fin. The 

NACA fin’s thrust performance was highly sensitive to oscillation frequency, with an apparent 

optimal frequency of 2 Hz. Above this frequency there was a reduction in thrust, followed by a 
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further rise towards maximum frequency. This suggests a second thrust peak may occur 

beyond the frequency range of this experiment; however the postulated second peak does not 

occur at 4 Hz, so was unlikely simply to be a harmonic of the 2 Hz peak. 

Figure 83: Comparison between NACA (top) and biomimetic (bottom) fin performance. 

The biomimetic fin showed no such sensitivity to frequency. Its thrust increased steadily with 

both amplitude and frequency, although it showed signs of reaching a plateau towards the 

highest frequencies. 

For easier comparison, the same data is expressed in contour form in Figure 84, below. 
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Figure 84: Comparison between NACA (left) and biomimetic (right) fin performance. 

The difference between the two fins was most pronounced at around 3.5 Hz, at which 

frequency the biomimetic fin produced approximately double the thrust of the NACA fin at all 

amplitudes. 

5.3.2 Force Direction 

Figure 85 shows the instantaneous force direction for the two fins. The NACA 0012 fin (top) 

and biomimetic (bottom) fin profiles are operating at 3.5 Hz and 15° amplitude. Bold lines 

represent average readings, and the pale lines show the raw force data. Circles on the lines 

indicate phase angles of 0 and π, where the fin displacement is zero and angular velocity is at 

a maximum. Crosses indicate quarter-cycle intervals. The crosses without circles occur at 

phase angles of π/2 and 3π/2, where displacement is at a maximum and angular velocity is 

zero. The cycle start marker indicates the direction of the graph with respect to time. 
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Cycle start (large circle, in direction of smaller circles) Half-cycle marker 

Quarter-cycle marker Biomimetic fin NACA0012 fin 

Figure 85: Instantaneous force direction analysis for NACA (top) and biomimetic (bottom) fins. 

Figure 86 shows the two force profiles on the same axes. Maximum instantaneous thrust is 

comparable in the two fins, but in the NACA fin, the thrust peak is counteracted by negative 

thrust for a significant portion of the oscillation cycle. The biomimetic fin produces consis

tently positive thrust, in two long surges per cycle, but the lateral force is also much higher, 

peaking at approximately double that of the NACA fin. Some asymmetry in the force profiles is 

apparent, due possibly to imperfections in the manufacture of the fins. 

Cycle start (large circle, in direction of smaller circles) Half-cycle marker 

Biomimetic fin Quarter-cycle marker NACA0012 fin 

Figure 86: Comparison of force direction profiles at 3.5 Hz, 15°. 

Figure 87 shows the same force data for an experiment at 1.5 Hz and 15°, during which the 

mean thrust generated by the different fins was very similar. The NACA fin produced signifi

cant peaks of forward thrust, but again they were counteracted by periods of negative thrust. 

This time the NACA fin produced greater instantaneous forces in all directions, with peak 

lateral force slightly exceeding that of the biomimetic fin. 
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Cycle start (large circle, in direction of smaller circles) Half-cycle marker 

Biomimetic fin Quarter-cycle marker NACA0012 fin 

Figure 87: Comparison of force direction profiles at 1.5 Hz, 15°. 

5.3.3 Power Consumption 

Figure 88 shows thrust production vs. input power. Power indicates mechanical power 

delivered to the fin, excluding motor and drivetrain losses. It should be noted that since the 

actual position of the fin was not recorded for the experiments in this chapter, the power 

readings used to construct this graph are estimations based on the instantaneous torque and 

angular velocity based on the target position of the fin. They represent the best estimation of 

input power attainable from the available data. They were used to give an indication of the 

trends in power consumption, and were used to make decisions about subsequent experi

ments, and the future development of the rig, described in Section 6.2.2 (page 124). 

Up to an input power of around 0.2 W, both fins follow approximately the same thrust-power 

curve. Beyond this point the NACA fin hits a ceiling at around 0.3 N thrust, while the biomi

metic fin is able to produce greater thrust as input power is increased, up to its own maximum 

of around 0.6 N. These maximum values occur at the limits of the fin oscillating apparatus, so 

do not represent the greatest thrust that can be produced by the fins. If higher frequencies 

and amplitudes were attainable, the trends indicate that greater thrust would result. 
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NACA Biomimetic 

Figure 88: Thrust production against input power. 

5.4 Discussion 

The results provide some interesting insights into the importance of stiffness profile in the 

performance of pitching flexible fins. 

5.4.1 Mean Thrust 

The two fins responded very differently to the range of oscillation conditions. While the fins’ 

thrust production was similar at lower frequencies, the biomimetic fin became considerably 

more effective as frequency was increased, in some cases producing more than double the 

thrust of the NACA fin. 

Most of the variation in thrust production was due to oscillation frequency. The two fins 

responded to changes in amplitude in a very similar way; with a steady increase from low to 

high thrust as amplitude increased, following a similar path regardless of frequency. However, 

it cannot be assumed that this trend continues indefinitely: As the peak-to-peak amplitude 

tends towards 180° and more, an increasing portion of its cycle will be generating force in the 

wrong direction, counteracting the useful thrust. This effect was not observed in the experi

ments described above because the maximum amplitude of 36° peak-to-peak was too low for 

it to be noticeable. 

The way in which thrust increased steadily with oscillation amplitude is also partly a conse

quence of the tests being performed at zero forward velocity; the correlation between ampli

tude and thrust would be curtailed at a lower amplitude if the velocity had been greater than 
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zero, since drag on the fin at the extremes of its movement would begin to counteract the 

thrust. 

The NACA fin generated up to 25% more thrust than the biomimetic fin within a narrow band 

of oscillation frequencies from 0.25 to 1.5 Hz. Observation of the fin oscillating at these 

frequencies showed the trailing edge was moving with a large amplitude, in phase with the 

oscillation of the axle; no wave was being carried down the fin, it was simply moving in a side-

to-side motion, at its lowest resonant frequency. These were the frequencies of peak thrust for 

the NACA fin, and the only frequencies at which it produced greater thrust than the biomi

metic fin. The difference in thrust between the two fins was still small in comparison to that 

observed at higher frequencies. The NACA fin’s mode of oscillation in this frequency range 

was of a quarter-wavelength at maximum deflection (see Figure 89). 

Quarter wave 

Half wave 

Three-quarter wave


Full wave


Figure 89: Example of modes of oscillation in an oscillating flexible fin. 

This is a similar finding to that described in a previous numerical investigation reviewed in 

Section 2.7.1.1 (page 40), in which a simulated pitching flexible fin of uniform stiffness profile 

exhibited peak thrust capability at the same quarter-wave oscillation mode (Alben, 2008). Both 

the simulated fin in Alben’s study, and the real fin with the NACA 0012-derived stiffness 

profile in this study, exhibited an initial peak of thrust as frequency increased from zero, which 

then reduced as the frequency was increased further. Alben’s work showed that after this 

initial peak, no higher thrust peaks resulted at higher oscillation modes. This finding could not 

be replicated in the NACA fin, because its second thrust peak occurred beyond the maximum 

frequency of the oscillation equipment. It can be said, however, that both NACA fins exhibited 

a dip in thrust beyond the quarter-wave peak. 

The biomimetic fin, did not display the same behaviour. Despite achieving almost the same 

thrust as the NACA fin in low-frequency quarter-wave oscillation, it went on to produce double 

the thrust at higher frequencies, with no dip in thrust performance between oscillation modes. 

Observation of the biomimetic fin producing its peak thrust showed it to be operating in at 

least a full-wave oscillation mode, meaning the transition from lower modes occurred with no 
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discernible dip in thrust, and that higher oscillation modes within the experimental parame

ters produced more thrust than the lower ones. 

5.4.2 Force Direction 

At higher frequencies, at which the biomimetic fin produced around double the thrust of the 

NACA fin, its force profile showed smooth and consistent thrust production, with correspond

ingly large lateral forces (Figure 86). Under the same conditions the NACA fin produced 

sudden spikes of thrust which quickly subsided into long periods of low or even negative 

thrust. Both fins flexed during the tests, storing energy elastically, but while the biomimetic 

profile appeared to encourage the propagation of a wave down the fin, all the way to the tail, 

the NACA fin, being thicker at its trailing edge, prevented such waves from forming. Instead, 

the stored energy was dissipated in a rapid flick of the tail, creating local turbulence, but little 

thrust. 

The biomimetic fin was more consistent than the NACA fin in its production of thrust. Its 

instantaneous thrust rarely dropped below zero, a characteristic it shared with the pectoral 

fins of bluegill sunfish (Lauder and Madden, 2007), discussed in Section 2.3.2.1 (page 31). To 

compare these types of fin is not necessarily to compare like with like, because the structures 

and actuation modes of the fins are very different. However, they do share some common 

characteristics. The sunfish’s pectoral fin uses an intricate structure combined with complex 

actuation to actively control its stiffness and shape. In doing so it is able to sustain constant 

positive thrust in circumstances where this is difficult to achieve. The artificial biomimetic fin 

was given a stiffness profile copied from the body of a real sunfish, in an effort to achieve more 

natural interaction with the surrounding fluid. It too demonstrated an ability to sustain 

constant thrust, under conditions in which the standard aerofoil-shaped fin could not. The 

biomimetic fin showed consistency, never dipping into negative thrust when operating under 

optimal conditions, and even when oscillation conditions were not favourable, its instantane

ous thrust was almost always positive, and less erratic than the NACA fin. 

The biomimetic fin generated greater lateral forces than the NACA fin. In some applications, 

this could be seen as a disadvantage, but if the fin is supported in such a way as to allow 

lateral movement, it is possible that the heaving motion induced by the forces could be 

beneficial to thrust production. Alternatively, the high lateral forces on the fin may be neces

sary to form the fin into the correct shape for efficient thrust generation, in which case 

allowing lateral movement may hinder generation of thrust. Discerning which of these two 

hypotheses is closer to the truth will require further experimentation. 

If high lateral forces are necessary, this need not be a hindrance to real-world application of 

finned propulsion. A simple solution would be to use two parallel fins oscillating in opposite 
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phase, so that the lateral forces cancelled each other. This approach is favoured by many 

swimming mammals that use paired appendages as their means of propulsion, and inspired 

the designers of the Proteus ‘penguin boat’ (Thomson, 1997). 

5.5 Conclusions 

Overall, the biomimetic fin showed a better response to the range of oscillation conditions, 

slightly below the thrust of the NACA fin at low oscillation frequencies, but far exceeding it as 

the frequency was increased. The consistency of its thrust generation was also an improve

ment on the NACA fin, with the instantaneous thrust rarely dropping below zero, even under 

sub-optimal oscillation conditions. 

One very promising finding was the consistent increase in thrust production beyond the first 

resonant mode in the biomimetic fin, which could translate to more predictable performance 

in real-world applications. Dips in thrust after the first resonant peak were observed in the 

NACA fin and, in previous work, simulated in fins of uniform stiffness profile. The biomimetic 

fin suffered no such reduction, showing smooth transitions through oscillation modes. 

Fin performance is affected by many variables, and although this experiment only covered a 

small selection of them, the higher thrust generated by the biomimetic fin over such a range of 

conditions was an interesting result, and warranted further study. In relation to the hypothesis, 

no claims could be made at this stage about the specific effectiveness of using a biomimetic 

stiffness profile; the success of the biomimetic fin could have been caused by other factors. In 

particular, it was vital to assess whether the greater thrust of the biomimetic fin was a 

consequence of its shape, or simply due to it having a greater average stiffness than its NACA 

counterpart. 

The power readings suggest the two types of fin followed similar thrust-power curves, but the 

power readings in these experiments were only nominal, so it was unwise to draw conclusions 

from them without further data. Therefore another aim of future work was to improve the test 

rig to provide accurate and reliable position measurements, from which accurate power 

readings can be calculated. 

And so the goals of the next round of experiments were set: To discern whether the superior 

performance of the biomimetic fin was due to its shape, or simply due to it having a higher 

average stiffness than the NACA fin. Secondly, to introduce a more accurate method of angle 

measurement, and gather accurate information on the power consumption of the two fin 

designs. 
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Chapter Six


Fin Material Experiments


6.1 Introduction 

The previous chapter described a set of experiments that were carried out on two silicone 

rubber fins, both 120 x 120 mm in size, and of constant spanwise cross-section. One had a 

standard NACA 0012 aerofoil shape, and the other used a biomimetic stiffness profile derived 

from a pumpkinseed sunfish. The biomimetic fin produced considerably greater average static 

thrust than the NACA fin over a wide range of frequencies and amplitudes, but further 

experiments were required to discern whether the advantage in thrust came from its biomi

metic profile, or simply from the fact that it had a greater overall rigidity than the NACA fin, 

owing to its thicker profile near the fin axle. 

This chapter describes improvements that were made to the test equipment to increase the 

accuracy of its measurements. It also documents the second round of experiments, in which 

the role of material stiffness is examined in the performance of both the biomimetic and 

NACA fins, and the power consumption of the fins is calculated with greater accuracy than 

had previously been achieved. 

6.2 Changes to Methods and Equipment 

Several changes were made to the experimental setup described in Section 5.2 (page 110). 

Technical improvements to the rig, described below, meant that amplitudes could be meas

ured more accurately than in the previous round of experiments, and that power readings 

were also more reliable. The experimental methods were also refined to make use of the rig’s 

enhanced abilities. 

6.2.1 Changes to Experimental Methods 

Because of greater confidence in the equipment’s ability to perform large numbers of tests 

automatically, accurately, and without errors, the number of tests that were performed in each 

experiment set was increased from 114 to 190. Amplitude was varied between 2 and 20° 

centre-to-peak in steps of 2°, and frequency from 0.5 to 5 Hz in steps of 0.25 Hz. The slight 

increase in maximum amplitude meant that the servo was being used very close to its angular 

velocity limits, but a newly installed angle measurement sensor meant that any shortcomings 

in its performance would not affect the results adversely. 
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The total number of fin cycles per test was reduced from 20 to 15, with the last 10 being 

analysed. Discarding the first 5 cycles allowed time for the fin to reach a steady state before 

measurements commenced. The reduction from 15 to 10 measured cycles reduced the time 

necessary for an experimental set, and reduced build-up of turbulence in the water, whilst 

having a negligible effect on the quality of the data. Further information on the number of 

cycles necessary per test has been given in Section 4.7.1 (page 100). 

6.2.2 Improvements to the Test Rig 

6.2.2.1 Angle measurement sensor 

A good quality servomotor, even one designed for use in radio-controlled models, can 

reproduce angles to an accuracy of around one degree, provided excessive loading does not 

prevent it from moving to its intended position. Because the desired motion of the fin and the 

expected forces were within the servo’s capabilities, the servo-actuated test rig used for the 

experiments in Chapter Five was designed with no direct feedback of the servo’s position. The 

position data used in calculations of angular speed and power consumption was the target 

position of the fin, rather than its actual position. 

The drawback of this method was that the servo’s dynamic response was not perfect, so there 

was a small time lag between the intended output wave and the actual fin position. This 

resulted in the position readings being out of sync with the force readings, reducing the 

accuracy of the power calculations. The time lag varied depending on the frequency and 

amplitude of the target wave, and so could not be cancelled as easily as the servo signal 

latency had been (Section 4.4.4.4, page 89). Figure 90 shows an example of a test affected by 

time lag, where the torque reading should have been approximately in opposite phase with the 

target angular velocity, but is clearly not. 
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Figure 90: A sample of force and angle data showing problematic time lag. 
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This problem did not affect the accuracy of the force readings, because they were not influ

enced by the angular position of the fin. It did, however, mean the power and amplitude 

readings for the fin were nominal rather than exact, being based on the target position of the 

fin rather than a direct measurement. The solution to this problem was to add a potentiome

ter to the rig, to provide feedback of the servo’s true position. This allowed the power con

sumption to be calculated from real values, unaffected by any lag between intended and real 

location. 

The modification consisted of two arms of equal length, made from ABS, created using a rapid 

prototyping machine. One of the arms was attached to the fin axle, near the servomotor, and 

the other was connected to a potentiometer. A high-precision potentiometer was selected, with 

a linear response, so that the voltage produced would be proportional to the fin’s angular 

displacement. It was of a conductive plastic type, rather than wire-wound, to cut down noise, 

and give the readings the highest resolution possible. The potentiometer was mounted 

securely on the rig, and the two arms coupled together using a length of steel rod (Figure 91). 

Tolerances were carefully controlled to ensure there was negligible play, which could have 

caused hysteresis in the angle readings, and also to ensure friction was kept to a minimum, so 

that the motion of the motor was not impeded. 
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Figure 91: Fin angle sensor modification. 

6.2.2.2 Angle deviation 

A drawback of using a model servo as an actuator was that model servos use proportional 

control to follow the demand position, rather than more accurate proportional–integral– 

derivative (PID) control. Proportionally controlled servos are well suited to applications where 

they have to move quickly and accurately to a particular position, but are less adept at 

following a defined path at variable speed. It meant that at any given time, the speed of the 

servo was proportional to its distance from the intended target, so it only moved at its 

maximum speed when there was an error of several degrees in its position. The faster the 

servo was required to move, the further it lagged behind its desired position, even when 

operating within its maximum slew speed. A consequence of this time lag was that the 

waveform was slightly compressed in the amplitude axis, because as the servo was still 

travelling towards its maximum displacement, the desired location had already reached its 

maximum and was beginning to return. 
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Figure 92: Servo accuracy at amplitude 16°, frequency 1 Hz. 
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Figure 93: Servo accuracy at amplitude 16°, frequency 5 Hz. 

Figure 92 and Figure 93 show the effect of frequency on the accuracy of the servo. Both 

graphs show short samples of two cycles from relatively high-amplitude tests on a hard 

compound biomimetic fin. Figure 92 shows a low-frequency test, at 1 Hz, where the angle 

reproduction was very accurate. Figure 93 shows the servo struggling to follow the demand 

curve when the frequency was increased to 5 Hz. It is important to note that the frequency 

reproduction is unaffected by the servo’s shortcomings, and the waveform is still close to 

sinusoidal. The most significant effect of the servo’s shortcomings was to reduce the amplitude 
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of the waveform, and introduce a small time lag in comparison to the target waveform. Neither 

of these effects compromised the accuracy of the results, since the measured angle was used 

in calculations, not the target angle. Therefore, the rig could be safely operated at higher target 

amplitudes than the motor could reproduce, and the results would take the discrepancy into 

account, and not be affected by it. This was a significant improvement over the experimental 

setup used in Chapter Five, because it meant real power measurements could be gathered for 

all fin tests, eliminating the need for estimates based on target fin positions. 

6.2.3 Fins 

6.2.3.1 Fin materials 

In the previous chapter, two different fins were created, from the same resin, with different 

stiffness profiles. This time, a total of four fins were used: two biomimetic and two of 

NACA 0012 profile. Each of the two profiles was created in two different silicone resin 

compounds; the two ends of the stiffness scale discussed in Section 3.1 (page 57). The softer 

resin had a Young’s Modulus of 0.32 Nm-2, and the harder resin one of 0.52 Nm-2 . 

Although the soft-compound biomimetic and NACA 0012 fins were the same in shape and 

material as those in Chapter Five, a slightly different technique was used in their manufacture, 

as explained in Section 4.2.1 (page 69). The soft fins had a stiffness 14 times greater than the 

sunfish that supplied the source data, as in the earlier experiments. The harder resin com

pound used for the other fins gave them a stiffness factor of around 23 in comparison to the 

sunfish. Figure 94 shows the stiffness profiles of all four fins, together with source data from 

the pumpkinseed sunfish. A logarithmic scale is used, since the stiffness of the fins varied from 

leading to trailing edge over more than 3 orders of magnitude. 
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Figure 94: Flexural stiffness of all four fins, and source data. 

6.2.3.2 Test rig setup 

The test rig setup was also changed for this set of experiments. The hard-compound fins were 

found to produce larger forces than the softer ones used in Chapter Five, so the rig geometry 

and fin direction were changed so as not to overload the sensors, as explained in Section 

4.4.4.5 (page 90). 

It was important that the data from all four fins was gathered in an identical experimental 

setup. For this reason, and because the variable ranges had been increased, a new set of data 

was gathered for all the fins, using the same rig setup for all experiment sets, 

6.2.3.3 Axle adhesion method 

The adhesion method described in Section 4.2.2 (page 71) worked adequately for the 

experiments in the previous chapter, but for the second set of fins, an alternative method was 

devised which gave even better adhesion to the fin axle. 

The weakest link in the former method was observed to be the adhesion between the porous 

fabric and the silicone rubber. The weave of the fabric was too tight to allow the resin to seep 

through and wet it thoroughly, resulting in a bond that could, with some force, be peeled 

apart. 

The new method used a similar process, but instead of thin fabric, cotton string was wrapped 

tightly around the axle (Figure 95). The cyanoacrylate glue adhered very well to both the string 
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and the axle, and the coarser texture of the string allowed the silicone to grip it very effectively. 

The new method was used in the all of the experiments described in this chapter. 

Figure 95: String­wrap adhesion method. 
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6.3 Results 

6.3.1 Experimental Accuracy 

Improvements to the rig since the experiments described in Chapter Five meant that the 

accuracy of the motion control system could be measured. The mean deviation from the 

intended angle was calculated for every individual fin test, and the results are shown in Figure 

96. 
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Figure 96: Average deviation from target angle for all four fins; nominal amplitudes are displayed. 

All experiment sets show a minimum mean deviation of around 1° in the lowest frequency 

and amplitude tests. Figure 97 shows a small sample of raw angle data from one of these 
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tests, revealing that most of this deviation was caused by signal noise in the angle sensor 

channel, which had a resolution of around two thirds of a degree. 
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Figure 97: Noise from the angle sensor. 

At higher frequencies and amplitudes the deviation was significantly greater; reaching a 

maximum of nearly 7° in the some cases. Interestingly, the deviation in the soft resin fin was 

greater than in the hard fin. The hard fin generated higher forces than the soft fin, so the 

result suggests that magnitude of deviation was not simply related to the mean forces 

generated by the fins as they moved. A possible explanation for the greater deviation in the 

soft fins is the difference in dynamic response of the two fin materials. All the fins stored 

elastic energy and released it to the water as they oscillated, but subtle differences in the 

phase of this cycle in relation to the target path of the motor, could either help or hinder the 

servo from following its target path. 

Despite the drawbacks mentioned in Section 4.3.5 (page 75), using the Hitec HS-5945MG 

servomotor to actuate the fin yielded good results. Its performance was more than adequate 

for the majority of the tests performed, and where it fell short, the effect on the fin’s path could 

be measured, and included in subsequent calculations. The deviation in fin angle therefore did 

not compromise the accuracy of any of the following results. 
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6.3.2 Mean Thrust 

Figure 98 shows the mean thrust production of all four fins across the range of frequencies (0

5 Hz) and amplitudes (0-20°). 

NACA 0012 fin: Biomimetic fin: 

S
o
ft

 r
es
in

H
ar
d

 r
es
in

 

Figure 98: Mean thrust surface plots for all four fins. 

Table 9 shows the maximum thrust generated by each of the fins. 

NACA 0012 Biomimetic 

Soft 0.25 N 0.47 N 

Hard 0.49 N 0.79 N 

Table 9: Maximum mean thrust generated by fins. 
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The dramatic difference in thrust production between the biomimetic and NACA 0012 fin 

profile appears to be just as pronounced for the hard resin compound as for the soft one. The 

biomimetic fin produced around double the peak thrust of the NACA fin, and at specific 

frequencies and amplitudes exceeded it by almost three times. Again, the biomimetic fin 

responded well across the range of frequencies and amplitudes. The hard NACA fin showed a 

peak of thrust at around 2.5 Hz, above which the thrust decreased more than it had for the 

identical soft-compound fin, falling by 30-50% towards the maximum frequency of 5 Hz. 

The soft-compound biomimetic fin tests showed an apparent resonant frequency of around 

3.75 Hz, which had not been distinguishable in former experiments. This suggests that the 

hard-compound biomimetic fin also has a resonant frequency, at around 5 Hz, but its exact 

location is hard to discern, being on the edge of the rig’s frequency capability. 
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Figure 99: Thrust (N) contour plots for all four fins. 

Figure 99 shows the same data in the form of a contour plot. Some care must be taken to 

note the locations of data points when interpreting the contour lines. Where the hard-

compound NACA fin displays a peak thrust of just over 0.45 N, the contour lines suggest a 

downward trend as amplitude increases from this point. However, it should be noted that 

there are no data points in this region; the downward slope is an artefact of the interpolation 

method, based on more distant points. This phenomenon is apparent in some of the other 

plots in this thesis, usually to a lesser extent, but demonstrates the drawbacks of data 

interpolation, and why the locations of data points are included. 
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Interestingly, the thrust profile of the NACA 0012 hard-compound fin was similar to that of 

the biomimetic soft-compound fin, but the NACA fin achieved peak thrust at a lower fre

quency, and was less responsive to higher frequencies. 

6.3.3 Force Direction 

Figure 100 shows the instantaneous force direction plot for all four fins, at a frequency of 

2.5 Hz and amplitude of 16° centre-to-peak. 2.5 Hz was the frequency at which the hard 

NACA fin generated its maximum thrust, yet was still matched in performance by the biomi

metic fin. 

Cycle start (large circle, in direction of smaller circles) Half-cycle marker 

Quarter-cycle marker Biomimetic fin NACA0012 fin 

Figure 100: Instantaneous force trace under oscillation at 2.5 Hz, 16° amplitude; soft fins (top) and 

hard fins (bottom) 

Consistent with the observations made in Chapter Five, the hard biomimetic fin produced 

consistently positive thrust, while the hard NACA fin produced greater instantaneous forces in 

all directions, including being in a negative thrust condition for 20% of the fin cycle. The 

biomimetic fin produced positive thrust throughout its entire cycle. The same oscillation 

conditions did not correspond with peak thrust production for either of the soft fins (Figure 

100, top), but the graph shows the biomimetic fin producing greater thrust than the NACA fin, 

with comparable levels of lateral force. 

Figure 101 shows force traces for both pairs of fins at the slightly higher frequency of 3.5 Hz. 

This is higher than the optimal frequency of the NACA fins, and under these conditions the 

biomimetic continued to produce consistent forward thrust throughout the entire fin cycle, 

with a mean thrust up to double that of the NACA fins. 
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Cycle start (large circle, in direction of smaller circles) Half-cycle marker 

Quarter-cycle marker Biomimetic fin NACA0012 fin 

Figure 101: Instantaneous force trace under oscillation at 3.5 Hz, 16° amplitude; soft fins (top) and 

hard fins (bottom) 
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6.3.4 Lateral Force Generation 

The results for lateral force generation in all of the fin experiments are shown below, as 

surface (Figure 102) and contour plots (Figure 103). Lateral force generation correlates 

approximately with the production of thrust. However, the peaks in lateral force production in 

the NACA fins are less pronounced than those on the thrust plots, and occur at higher 

frequencies. The biomimetic fins do not show peaks at all, with lateral force production rising 

continuously as oscillation frequency increases. 
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Figure 102: Average absolute lateral force (N) surface plots for all four fins. 
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Figure 103: Average absolute lateral force (N) contour plots for all four fins. 
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6.3.5 Power Consumption 

6.3.5.1 With respect to frequency and amplitude 

The power readings for this round of experiments were derived from the actual angular 

displacement of the fin axle, rather than from an estimation based on the target angle. This 

method increases accuracy, particularly at high amplitudes and frequencies. The mechanical 

power consumption of the fin, excluding motor losses, is shown below both as surface (Figure 

104) and contour plots (Figure 105). 
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Figure 104: Power (W) surface plots for all four fins. 
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Figure 105: Power (W) contour plots for all four fins. 

The hard-compound biomimetic fin operating at maximum frequency and amplitude con

sumed the most power, and produced the most thrust. Results for the other fins showed that 

the peak power consumption for each fin also corresponds with the frequency and amplitude 

at which it produces the greatest thrust. The resemblance between peaks and troughs on the 

power consumption and thrust graphs suggested a close relationship between the two. 
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6.3.5.2 Statistical analysis of thrust­power relationship 

To help scrutinise this relationship further, Figure 106 shows a scatter plot of the mean thrust 

and power consumption of every test, on all of the four fins. 

Biomimetic soft Biomimetic hard NACA soft NACA hard 

Figure 106: Thrust production against input power for all experiments. 

When grouped together, it is interesting to note that the biomimetic and NACA fins follow two 

distinct thrust-power curves. To give a measure of the difference between the two designs, the 

curves were approximated by regression lines of the form shown in Eq. (52), in which A and B 

are the coefficients, and x and y represent the power and thrust axes respectively. 

x = A(1− e − By ) (52) 

This form of regression line was chosen as it naturally fits the shape of the data to which it is 

being applied. Models were fitted to the two datasets using the method of least squares, and 

the resulting lines are included in Figure 106. The high coefficient of determination (r2) values 

indicate a good fit of the model to the data. 

The separation between the two datasets was noticeable from the raw data alone, but to 

provide statistical confirmation, a permutation test was performed on the data. A null hy

pothesis was assumed, according to which the data points were scattered randomly around a 

common regression curve. This was the hypothesis that needed to be disproved in order to 

show a difference between the two datasets. 

The area between the two curves, up to a power of 0.4 W, was selected as a test statistic. The 

0-0.4 W range was chosen because it represented the range over which the NACA and 
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biomimetic fin data coincide; beyond this region, any comparison would have used extrapo

lated data, and therefore been less meaningful. This area was calculated for the regression 

lines shown above. 

The data points from both sets of experiments were then randomly re-assigned into two new 

groups. A new regression curve was fitted to each of these groups, using the same method as 

with the original datasets. The test statistic was calculated and recorded for the newly re

allocated data. The process of random re-allocation was repeated 1000 times, with the help of 

a MATLAB program. The magnitude of the original test statistic could then be compared to 

those produced by the random allocations. Of specific interest was its position within the 

distribution of test statistics that had been generated. A p-value of less than 0.025 would have 

indicated statistical significance. 

The results were decisive; no more extreme separations between the regression curves 

occurred as a result of the random re-allocations than had been observed from the original 

data. This indicated a p-value of less than 0.001, demonstrating the statistical significance of 

the separation in datasets. The null hypothesis could therefore be rejected. The regression 

models indicated an average advantage to the biomimetic fins of 18-26% more thrust for a 

given input power, in the range where the two datasets overlapped. 

The randomisation test clearly shows the difference between the two fin types across the 

entire power range. It is also interesting to note that for both the biomimetic and NACA fin 

designs, the soft-compound fins followed almost identical thrust-power curves to their hard-

compound counterparts, but reached around half the maximum thrust. This agrees with the 

findings of Hobson et al. described in Section 2.7.1.1 (page 40). 

6.3.5.3 Further analysis of thrust­power relationship 

Greater insights can be gained by looking at individual sequences of tests in more detail. The 

figures below show reduced datasets from all four fins, with tests grouped together by oscilla

tion amplitude. Most of the test sequences of tests followed a similar pattern; as frequency was 

increased, thrust and power consumption would also increase, but only up to a point. After a 

certain optimal frequency, thrust would begin to reduce, and with it, power consumption 

would decrease also. Beyond the optimal frequency, the fins produced less thrust per unit 

power than they had done at lower frequencies. In order to show each dataset clearly, only test 

amplitudes of 8, 12, 16 and 20° are included, and the graphs are printed at different scales. 

For a comparison of the four fin types on the same axes, see Figure 109. 
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Figure 107: Thrust production against input power for the soft NACA (top) and soft biomimetic 

(bottom) fins, divided into amplitude groups. Frequency increases from left to right. 

Figure 107 shows the results from the two fins made from the softer resin. Some interesting 

behaviour could be seen in the soft NACA fin; thrust and power consumption began to rise 

again after an initial dip. This behaviour corresponded with the fall and rise seen in its thrust 

generation in Figure 98, which implied the existence of a second optimal frequency beyond 

the range of these experiments. The shape of the graph suggests the second peak will not 

surpass the thrust-to-power ratio of the first optimal frequency, unless a dramatic rise in thrust 

production occurs. 
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Figure 108: Thrust production against input power for the hard NACA (top) and hard biomimetic 

(bottom) fins, divided into amplitude groups. Frequency increases from left to right. 

Figure 108 shows the results from the harder two fins. The drop-off in thrust and power 

consumption was less apparent in the hard biomimetic fin, which together with its thrust 

performance (seen in Figure 98) suggested it was well-adapted to producing thrust across the 

entire range of oscillation conditions tested. 

An observation drawn from the four graphs in the figures above, is that the highest amplitude 

dataset invariably produces the best ratio of thrust to input power. Lower amplitude experi

ments followed a similar curve at lower frequencies, but achieved at best similar thrust for the 

same input power. This means that the dataset can be reduced further and still be meaningful. 

Figure 109 shows results from all four fin profiles on the same axes, for the experiments with 
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largest oscillation amplitude. Each line therefore represents the greatest thrust that could be 

produced by a fin, for a given input power, at any oscillation amplitude within the experimen

tal range. As was the case in Figure 106, there was a clear difference in thrust-to-power ratio 

between the two fin profiles; the biomimetic design produced 18-20% more thrust per watt 

than the NACA fins. 
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Figure 109: Optimal thrust production against input power for all four fins. 

6.3.6 Optimal Frequencies 

Table 10 shows the optimal oscillation frequencies of all four fins. These are the frequencies 

at which they produced maximum thrust, at an oscillation amplitude of 15°. The hard 

biomimetic fin’s thrust appears to plateau towards the maximum frequency of the tests, so its 

optimal frequency is not possible to discern as accurately, without performing higher fre

quency tests. 

NACA 0012 Biomimetic 

Soft 2 Hz 3.75 Hz 

Hard 2.5 Hz >5 Hz 

Table 10: Optimal frequencies of fins 
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The optimal frequencies of each fin are shown together with their maximum thrust in Figure 

110, in which dotted lines link fins of the same shape but different material stiffness. There 

are clearly too few data points to draw detailed conclusions, but the positions of the points at 

least suggest that the peak thrust is not a simple function of the fin’s optimal oscillation 

frequency; regardless of the precise optimal frequency of the hard biomimetic fin, the two fin 

profiles do not lie on the same path. 
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Figure 110: Maximum thrust and the frequency at which it was attained. 

6.4 Discussion 

6.4.1 Thrust Performance 

The general behaviour observed in both versions of the biomimetic and NACA fins was similar 

to that of the first set of experiments. The biomimetic fins produced greater maximum thrust, 

and produced thrust over a wider range of frequencies and amplitudes than the NACA fins. 

Fins of the same stiffness profile had very similar thrust characteristics, but displayed different 

optimal frequencies; this finding is discussed in Section 6.4.5 (page 149). 

As Figure 108 (page 145) shows, thrust produced by the hard biomimetic fin appeared to be 

reaching a plateau at a frequency of 5 Hz, but no peak is visible within the range of results 

gathered. However, the soft biomimetic fin displayed no increase in thrust beyond the 

oscillation frequency of 3.75 Hz. This is evidence for the biomimetic fin profile having an 

optimal frequency, as had been postulated after the first round of experiments. 
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Coincidentally, the maximum thrust readings for the hard NACA and soft biomimetic fins were 

almost identical. This allowed an approximate comparison of the two fin profiles, as if their 

stiffnesses had been tuned to generate the same thrust. Apart from the differing optimal 

frequencies, the biomimetic fin’s thrust peaked over a slightly broader frequency band than 

the NACA fin. Its reduced sensitivity to oscillation frequency could be an advantage in real-

world applications of flexible fin propulsion, since a biomimetic fin propulsor and its actuator 

would not have to be so finely tuned to produce maximum thrust. It is also consistent with the 

findings of the previous chapter (Section 5.4.1, page 119). 

6.4.2 Force Direction 

The instantaneous force plots for the four fins showed the same characteristics as those 

analysed in Chapter Five. The extra data gathered in this chapter for different material 

stiffnesses revealed similar behaviour between soft and hard fins of the same stiffness profile. 

The NACA fin, even when operating at its optimal frequency, did not produce thrust consis

tently. Its instantaneous force varied over a wide range, and the fin spent a portion of each 

cycle producing negative thrust. The biomimetic fin produced thrust much more consistently 

over each cycle. The significance of these observations is discussed in Section 5.4.2 (page 121). 

6.4.3 Lateral Force 

The most noticeable feature of the lateral force plots shown in Section 6.3.4 (page 138) is a 

difference in behaviour between the NACA and biomimetic fins. While lateral force reached a 

plateau in the NACA fins at approximately the same frequency as forward thrust reached a 

peak, lateral force generated by the biomimetic fins continued to rise as frequency was 

increased, and was still rising when the frequency reached its maximum. 

The relationship between thrust and lateral force production was similar between the two 

biomimetic fins. Material stiffness had no effect; high thrust always came at the expense of 

increased lateral force. However, this need not be a problem in the application of fin propul

sion, since lateral force could be counteracted by the inertia of the craft being propelled, or by 

an opposing fin, as discussed in Section 5.4.2 (page 121). 

6.4.4 Power Consumption 

Despite the large difference in mean thrust production for hard and soft fins of the same 

stiffness profile, their thrust-power curves were very similar (Section 6.3.5, page 140). This 

finding was of particular interest because it suggested that the relationship between power 

input and thrust output was defined primarily by the stiffness profile of the fin, rather than by 

the stiffness of the moulding material. 
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The chief finding reported in Chapter Five was the superior static thrust performance of a 

biomimetic fin over a NACA fin, for a wide range of frequencies and amplitudes. The extra 

results gathered in this section confirm that this was not a one-off result for a particular 

moulding material, but was more widely true. Not only was the thrust generated by the 

biomimetic fin greater over most of the oscillation conditions, but thrust-to-power ratio was 

consistently higher, regardless of the material used. 

The data points on the thrust-power graph displayed a positive gradient, even towards the 

maximum power input. This suggested that if the maximum power were increased, either by 

increasing the amplitude or frequency of oscillation, or by using stiffer fin moulding material, 

thrust would increase correspondingly. 

The results also show that the biomimetic fins were more efficient at converting power to 

thrust than the NACA fins, across the entire power range of the experiments. If a NACA fin 

were created that were capable of dissipating as much power as the biomimetic fin in this 

experiment, it would still produce less thrust than biomimetic design if it followed the same 

thrust-power curve as the other NACA fins. 

6.4.5 Optimal Frequencies 

Plotting the maximum thrust of each fin against the frequency at which it was achieved 

(Figure 110, page 147) yielded a small but significant insight. Although a higher optimal 

frequency indicated a higher maximum thrust for both of the fin profiles, the points did not 

fall in a way that suggested one variable was a function of the other. This shows that where a 

biomimetic stiffness profile brought improvement to the thrust production of a fin, it did not 

do so simply by altering its natural frequency by the redistribution of mass. If this was the case, 

a clearer relationship linking all four measurements would be expected. 

This supports the theory that the improvement in thrust performance is a direct consequence 

of the stiffness profile itself, and not simply an incidental effect of the change on its natural 

frequency. 

6.5 Comparison with Previous Studies 

Of the papers reviewed in Chapter Two, a number concerned tests on flexible fin propulsors. 

Although it is difficult to draw direct comparisons between experiments carried out on 

different fin designs, with different oscillation and flow parameters, it was possible to extract 

some information from the papers, which provide a context for the findings presented in this 

thesis. The figures are listed in Table 11. 
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Study Fin tested Dimensions 
(chord x 
width, mm) 

Aspect 
ratio 

Max input 
power (W) 

Max 
thrust 
(N) 

Thrust­
power ratio 
(NW­1) 

(Kemp, et al., 
2003) 

Pitching NACA fin, 
varying flexibility 

152 x 152 1 17 10 1 - 2 

(Heathcote, et al., 
2004) 

Heaving flat plate, 
varying flexibility 

90 x 300 3.3 - - 0.8 - 4 

(Prempraneerach, 
et al., 2003) 

Pitching and heaving 
flexible NACA 

100 x 494 4.94 2.9 4.3 1 - 1.75 

(Kobayashi, et al., 
2006) 

Pitching 2-section 
rigid fin with flexible 
joint 

240 x 60 0.25 - 1.6 -

This study Pitching NACA fin, 
varying flexibility 

120 x 120 1 0.8 0.8 0.8 - 2 

Table 11: Comparison of fin studies 

The comparison shows that the results were obtained under a wide variety of conditions, with 

power consumption and thrust production varying by an order of magnitude. However, the 

thrust-to-power ratios of all the experiments are comparable. The study that strays furthest 

form the mean in maximum thrust-to-power ratio is that of Heathcote et al.; even in this study, 

most of the experiments fell within the 1 – 2 NW-1 range, with the maximum readings of 

4 NW-1 occurring in experiments using highly flexible fins at low Reynolds numbers. It is worth 

noting that there is no theoretical maximum thrust-power ratio, but such large values would 

be difficult to achieve in practical applications, as they would require large fin surfaces to move 

slowly in relation to the water, which would hinder manoeuvrability. 

6.6 Conclusions 

Chapter Five concluded that although the thrust performance of the biomimetic fin was 

superior to the NACA fin, it was unclear whether the improvement was caused by the stiffness 

profile itself, or was a side-effect, for example due to increased overall stiffness, which could be 

achieved by other means. The wider range of fins and improved testing methods employed in 

Chapter Six provided new insights into the specific role of stiffness profile in flexible fin 

propulsion. Consistent with the findings of Chapter Five, the thrust produced by the biomi

metic fins was greater in magnitude, more consistent, and was generated over a wider range of 

oscillation conditions than the NACA fins. Furthermore, the new data showed that the findings 

of Chapter Five were not simply due to the biomimetic profile having a greater stiffness than 

the NACA one, but that the distribution of stiffness along the fin from leading to trailing edge 

itself was a cause of the improved performance. Testing of identically-shaped fins made from 

resins of greater stiffness helped to separate the effects that were caused by changing the 

overall stiffness, (and consequently the natural frequency) of a fin, from the effects of changing 

the stiffness profile. 

Page 150 of 220 Paul Riggs 



The Use of Flexible Biomimetic Fins in Propulsion June 2010 

Increasing the material stiffness led to an increase in maximum thrust, and also increased 

natural frequency, as would be expected of a stiffer medium. However, the stiffer fins followed 

very similar thrust-power curves to their softer counterparts, showing than an improvement in 

efficiency could not be expected to result from an increase in fin stiffness alone. 

In relation to the NACA profile of the same material, the biomimetic stiffness profile resulted 

in increased thrust production over a wide range of frequencies. However, this cannot be 

taken as an indicator of superior real-world performance, since the same effect can be 

achieved by using a stiffer fin material. The most significant improvements resulting from the 

biomimetic profile were a higher thrust-to-power ratio, and the accompanying observation that 

thrust production was more consistent over each cycle than the NACA fin; instantaneous 

thrust remained positive throughout the entire oscillation under a wide range of conditions. 

The other method by which stiffness profile could have indirectly affected thrust is by simply 

changing the natural frequency of the fin. However, the relationship between maximum thrust 

and the frequency at which it is achieved shows no clear correlation, which suggests there is 

no cause-and-effect relationship between the two. Eliminating this explanation leaves little 

doubt that the stiffness profile itself is the primary cause of the improvements observed in the 

biomimetic fin. 
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Chapter Seven


Summary of Conclusions and Future Work


7.1 Introduction 

The experiments described in the previous chapters gave valuable insights into the role of 

biomimetic design in oscillating fin propulsion. They also raised new questions that will need 

to be addressed if future work is to continue the same themes. This chapter presents a 

summary of the findings documented in the previous chapters, and explores the new research 

opportunities that have been uncovered. It also identifies areas in the work described above 

that could be improved and built upon by future studies. 

7.2 Summary of Conclusions 

The following is a short list of findings that resulted from the experiments described in this 

thesis. 

•	 Both hard and soft biomimetic fins showed a better overall response to the range of 

oscillation conditions than the corresponding NACA fins. 

•	 The biomimetic fins produced more thrust per watt than the NACA fins across a wide 

range of oscillation conditions. 

•	 The thrust-power curve followed by each fin was defined primarily by its stiffness pro

file, rather than its material stiffness. 

•	 Increased overall stiffness and natural frequency are secondary effects of employing 

the biomimetic profile, but the improvement in fin performance was not attributable 

to them. 

•	 Thrust produced by the biomimetic fins was more consistently positive than that pro

duced by the NACA fins. 

•	 The biomimetic fin allowed a seamless transition between oscillation modes up to its 

peak thrust output, while the NACA reduced in thrust beyond its lowest oscillation 

mode. 
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7.2.1 Support for Hypothesis 

The following hypothesis was proposed at the end of Chapter Two, and guided the design of 

the experimental equipment, as well as the planning of all the experiments carried out 

subsequently. Notwithstanding the numerous other avenues of research that warranted 

discussion along the way, its confirmation or disproof was the central goal of the experiments 

described in this chapter and the previous one. 

“Use of a biomimetic fin stiffness profile can improve the effectiveness of a 

flexible oscillating fin, over that of a standard NACA designated fin shape.” 

The results presented in this thesis offer strong evidence that this statement is true. Chapter 

Five showed an advantage in thrust development of the biomimetic fin over a wide range of 

frequencies and amplitudes, and gave cause for further investigation into the reasons. While 

the results were consistent with the hypothesis being true, there was no evidence that the 

increased thrust and smoother instantaneous thrust were specifically due to the stiffness 

profile of the fin, and therefore the findings were inconclusive. 

The second set of experiments, presented in Chapter Six, was designed to tackle the remain

ing uncertainty. The results, particularly those regarding thrust production and thrust per watt, 

lead to the conclusion that the real-world performance of the biomimetic fin used in these 

experiments was superior to that of the NACA fin, as a direct result of its modified stiffness 

profile. Several studies cited in this thesis (Ahlborn, et al., 1997, Heathcote and Gursul, 2007, 

Prempraneerach, et al., 2003) have concluded that a degree of flexibility is beneficial to thrust 

production in oscillating fin propulsion. This thesis adds to the existing body of knowledge by 

showing that further improvements in thrust production can be gained by optimising the 

distribution of flexibility along the fin. The biomimetic stiffness profile used in this thesis is not 

presented as an optimal solution, but as a demonstration of the value of naturally inspired 

design. 

Further research will be necessary to determine the extent to which varying a fin’s stiffness 

profile affects its performance, and possible directions for this research are discussed in some 

depth in the coming sections. However, the findings of the previous two chapters are signifi

cant in their own right, and suggest that the practice of using standard NACA aerofoil profiles 

by default might be improved upon, for any application in which flexible fins are employed for 

propulsion. 

7.3 Future Work 

The following sections discuss avenues for further study that arise from the studies presented 

in this thesis. 
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7.3.1 Wider Range of Oscillation Conditions 

Some of the results in the previous chapters showed a tendency for thrust to increase towards 

the highest oscillation frequencies, suggesting a second peak beyond the first optimal fre

quency. However, the limitations of the test equipment (see Section 4.3.5, page 75) meant tests 

could not be performed at a high enough frequency to prove or disprove this supposition. 

The thrust-power relationships shown, for example, in Figure 107 (page 144), suggest that no 

gains will be made in thrust-to-power ratio by employing higher oscillation modes, and this 

would be consistent with the findings of previous work (Alben, 2008), discussed in Section 

2.7.1.1 (page 40). It would, however, be helpful to carry out a wider range of tests, characteris

ing each of the fins over a wide enough frequency range to include more than one resonant 

frequency. 

In order to achieve the higher oscillation frequencies required for these tests, the fin actuator 

on the test rig would have to be improved or replaced. A more powerful servomotor, capable 

of higher slew rates, would be the simplest way to improve the actuator, but to achieve the 

desired accuracy and speed, it may be necessary to look to industrial motion control equip

ment, or one of the other technologies explored in Section 4.3 (page 71). The test rig would 

have to be modified accordingly, to cope with the larger forces produced by fins oscillating at 

higher frequencies. 

7.3.2 Visual Analysis of Fin Deflection 

Many of the conclusions about fin tests in this thesis were based on the force and torque 

measurements obtained from the fin test rig and instrumentation described in Chapter Four. 

While they are a powerful tool for understanding the performance of fins, they are by no 

means the only one. At times in this thesis, visual observations of the fins’ behaviour were 

cited, and were of value in forming conclusions about the performance of fins. A more robust 

method of recording the motion of fins would be an important area for future studies to 

address. 

The relationship between fin tip deflection, thrust power, and efficiency would be an interest

ing one to study, but tip deflection is only a valid measure of fin deformation if the fin is 

oscillating in its lowest resonant mode. Figure 111 illustrates the difficulty of assessing fin 

deformation with a single measurement. A more reliable method would be to record the mode 

of oscillation, in terms of the number or fraction of complete waves observed at a point in 

time. Alternatively the amplitude of the fin’s deviation at several points along its chord could 

be measured. Techniques such as these would require good quality high-speed footage of the 
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fin in motion, combined with either image processing software to perform the analysis, or 

scrutiny of selected frames by a human analyst. 

d 

d


Figure 111: Measuring deformation of a flexible fin. 

7.3.3 Intermediate Material Stiffnesses 

The tests described in this thesis used fins made from two different resin compounds. The 

softer of the two compounds was the most flexible moulding resin readily available, and the fin 

made from the harder compound generated forces at the limit of magnitude that could be 

measured by the test rig. The two resins therefore spanned the entire range that would have 

been practical to test with the available equipment and resources. Without changes to the test 

equipment, the range of stiffnesses between those already tested provides room for further 

study, although the similarity of the graphs plotted for hard and soft resins in Chapter Six 

suggests there is less to be gained than from other avenues of further study. Looking beyond 

the materials already tested, to create harder and softer fins, including testing of a rigid fin, 

would require changes to be made to the test equipment, but would give interesting insights 

into the relationship between material stiffness and the performance of a fin. An alternative 

approach could be to reduce the size of the fins being tested, thus allowing a wider range of 

stiffnesses without overloading the rig. A good understanding of the effects of scaling on the 

fins would be necessary to this approach; this topic is discussed further in Section 7.3.8 (page 

158). 

The relationship between optimal frequency and maximum thrust is a potential area for 

further study, and the data gathered thus far created an interesting, but somewhat sparse 

graph (Figure 110, page 147). Basic conclusions were drawn from it, but extra data will be 

needed to determine what kind of relationship, if any, links the maximum mean thrust of a fin 

with the frequency at which it is achieved. 

These two variables were of particular interest in this thesis because they had a bearing on the 

central hypothesis being tested (see Section 6.4.5, page 149). With extra data, other variables 

could be studied in relation to fin stiffness, such as power consumption, lateral force, and 

thrust consistency, shedding further light on the factors influencing fin performance. 
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7.3.4 Different Stiffness Profiles 

Modelling the biomimetic fin on the body of a pumpkinseed sunfish was a decision taken at 

an early stage in the study, and yielded many interesting results. The reasons for the decision 

are discussed in Section 5.2.1 (page 110). There are, however, many other possible sources of 

stiffness data that could have served equally well. A possible direction for further study would 

be to compare alternative biomimetic fin designs from a variety of sources. For example, the 

local stiffness along the fin rays of a pumpkinseed sunfish have been measured in previous 

work (Lauder, et al., 2006), and would provide an interesting contrast. 

7.3.5 Real­World Applications 

The trigger for the investigations documented in this thesis was the Bathymysis unmanned 

submarine, whose design is discussed in Appendix A. Its utilisation of crude flexible fins for 

propulsion prompted the subsequent literature study, and the experiments that followed. A 

satisfying extension to the work carried out so far would be to apply the insights gained 

experimentally to the Bathymysis, creating an improved submarine, able to generate more 

thrust and consume less power, through the use of optimised fins. The biomimetic fin design 

would be a good candidate for use on the submarine, and although the fins would need to be 

scaled up to produce adequate thrust, the information gained from the investigations in this 

thesis would be helpful in optimising its actuation methods. 

Applying the fins to a submarine would enable real-world performance tests that go far 

beyond those possible with a single fin. A good example of the kind of novel investigations 

that can be carried out on biomimetic swimming robots is found in Madeleine (Long, et al., 

2006), the four-finned robot submarine produced by Vassar College and reviewed in Section 

2.9.4 (page 50). 

The Bathymysis submarine was a group project, and continued to undergo many revisions and 

upgrades after those discussed in Appendix A. Sadly, this meant it would have been impracti

cal to revert it to its original, finned form. Even if a refit had been completed, its internal 

design and methods of operation were so different from those of the original submarine that 

comparison with its former self would have been fruitless. Consequently, at the time of writing, 

the biomimetic fins researched in this thesis have not been incorporated into the submarine. 

A number of projects have, however, sprung from the original work on the Bathymysis, 

including a number of novel propulsion technologies. 
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7.3.6 Flowing Water Tests 

The experiments in Chapter Five and Chapter Six both gathered data from fin tests in 

standing water, rather than from a flow tank. While static thrust is an accepted and helpful 

measure of a fin or propeller’s performance, data for each fin in moving water is important to 

gain a complete picture of their performance in relation to each other. This is therefore 

recommended as a priority for future research. 

Bollard efficiency is a useful method of comparing one fin’s performance with another, but 

cannot take the place of real efficiency data, derived from power flowing into and out of the 

fin. Since a fin in stationary water exerts force without movement, its output power will always 

be zero regardless of its effectiveness at generating thrust. Discussions of energy efficiency will 

be relevant only when measurements of thrust and forward speed can be taken simultane

ously. 

Any future sets of experiments using a flowing water test tank should test fins at a range of 

speeds, up to that at which their net thrust is zero. This encompasses the range of speeds at 

which a fin may be used as a propulsor in a real-world application. In practice, a propulsor 

would never operate under zero net thrust conditions, where the thrust and drag on the fin 

are equal and balance each other out, allowing it to move at constant speed. This is because 

there will always be an additional drag force acting on the fin: that of the body being pro

pelled. 

To gather data similar to that presented in this thesis, but at a range of flow velocities, would 

require many more experiments to be performed, and necessitate an expansion of the 

automated testing methods described in the previous chapters. The test rig software would 

need to be given closed-loop control of the stream velocity in a flow tank. It could then be 

programmed to carry out large numbers of experiments without human intervention. The 

analysis methods would also need to be expanded, in order to extract useful information from 

the experimental data. 

7.3.7 Flow Visualisation Techniques 

Methods of flow visualisation, such as Particle Image Velocimetry (PIV) or dye trails could give 

valuable insights into the performance of the fins. While analysing the force-time profile of a 

fin helps to reveal its interactions with the water and the reasons for its behaviour, a much 

fuller picture of the fin’s performance can be gained from looking at the way vortices are 

created, and how they interact with each other, and the fin itself. 

Previous work makes frequent use of PIV systems, but other methods of flow visualisation are 

gaining popularity. In several hydrodynamic studies at the Massachusetts Institute of Technol-
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ogy used fluorescent dye to highlight and analyse the vortices in the wake of an object. Dye 

can be imparted to the water either by applying it as a soluble coating to the fins under test, or 

releasing it under slight pressure from an opening on, or close to, the fin. 

Improvements in PIV software are making it easier to analyse wake patterns without the use of 

complex and expensive laser and imaging equipment. This is making simple flow analysis 

more practical for investigations that might otherwise have used more conventional methods 

to analyse flow characteristics. Future work building on this thesis would gain greatly from use 

of these recently developed technologies. 

7.3.8 Fin Dimensions 

All of experiments documented in this thesis were carried out on fins of the same length and 

height. While this was necessary to keep the variable space manageable, a good next step 

would be to determine, by experimentation, the effects of scaling the fins in different direc

tions. Greater understanding in this area would aid the design of fins for real-world applica

tions, such as the Bathymysis, which would require larger fins than those tested. 

The Reynolds number at which fins operate is only one factor in the relationship, since the 

fins are intended to operate at a range of flow speeds, down to zero. Also, the stiffness 

properties of the fin will not scale in the same way as the effects on the surrounding fluid, 

making the interaction between the two is a complex problem. However, a good understand

ing of the relationships governing the scaling of flexible fins would allow fins to be tested on a 

much smaller scale than that at which they are intended to be used. Smaller fins would 

require smaller testing facilities, and would be easier to actuate over a wide range of frequen

cies and amplitudes. 

Another area in need of further study relating to the fin’s dimensions is aspect ratio. While 

previous work (Hobson, et al., 2003) identified an aspect ratio of 1:1 as being optimal, this 

research was carried out at a private research establishment, and not all of the data leading to 

its conclusions has been made available. Further investigation is therefore warranted, to 

confirm the finding, and to provide data supporting it. A series of experiments could be carried 

out, starting with a fin of high aspect ratio, perhaps 2:1, which could then be trimmed in steps, 

down to a low aspect ratio, around 1:5. The re-use of the same fin in multiple tests would 

remove the need for several fins to be cast for each experiment. 

7.3.9 Decoupling Stiffness Profile from Shape Profile 

In a homogenous fin, stiffness profile is dictated by shape. The only way to truly isolate their 

effects from each other would be to develop a manufacturing method able to create fins in 

which the shape and stiffness profile are independent from each other. 
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One way of achieving this would be to compute a two-dimensional internal structure with a 

given stiffness profile, and manufacture it using an accurate method such as laser cutting. This 

‘skeleton’ could then be encased it in a relatively soft layer of silicone rubber of any shape; 

even a flat sheet. An example is shown in Figure 112, in which the darker areas represent a 

stiffer material, and the lighter background a highly flexible silicone resin. 

Axle 

Figure 112: Example of a flat fin using a biomimetic stiffness profile. 

For shapes other than a flat sheet, the stiffness profile of the soft rubber compound would 

have to be taken into account and offset by the stiffness profile of the internal structure. 

7.3.10 Numerical Studies 

An entirely different approach to understanding flexible fins is to use numerical modelling in 

stead of, or more realistically, as a supplement to, experiments. Numerical studies have the 

advantage of being able to test a far wider range of variables than would be possible in 

experiments, but fluid interactions are hard to model, and take a great deal of processing 

power, especially when dealing with three-dimensional models. Using a combination of Finite 

Element Analysis (FEA) to model the fin, and Computational Fluid Dynamics (CFD) to model 

the water surrounding it, a complete dynamic model of the functioning fin could be built, and 

used to explore many aspects of the fin’s design and actuation that would be hard to test 

experimentally. 

7.3.11 Unconstrained Lateral Motion 

In all the experiments of Chapter Five and Chapter Six, the fins as they were constrained in all 

axes, so that the forces they generated could be measured. In this configuration, the fin’s axle 

exerted a force on the fin, often several times larger than the thrust, to keep it from moving 

laterally; this is discussed in Section 5.4.2 (page 121). However, the fin actuator was also 
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capable of oscillating fins without constraining them in the lateral direction. This design 

feature was included as an aid to future experiments, in which the effect of lateral force being 

applied to the fin could be observed. The fin axle was supported at the top of the rig by a low-

backlash universal joint, coupled to the servomotor. The bottom of the axle was bonded to the 

fin, and in the middle, it was supported by a bearing. The bearing could either be clamped in 

the centre of the rig, to support the axle rigidly, or released, to roll freely from one side of the 

rig to the other, in an arc centring on the universal joint. The set-up is shown diagrammatically 

in Figure 113, with the fin in two different positions. In the diagram the axle has been 

truncated, which emphasizes the rotation of the fin about the x axis; in reality the fin moves in 

a much flatter arc. 

Servomotor 

Universal joint 

Axle 

Bearing 

Rig base 

z 
Fin 

y x 

Figure 113: Front view of fin actuator mechanism. 

To perform the same sets of experiments again, without applying lateral force to the fins, 

would be an interesting avenue of study. However, the control and measurement systems on 

the test rig would need improvement to make this possible. Without lateral constraint, the fin 

would have a tendency to wander to one side of the rig under its own net lateral force. The 

control system would need either to counter this actively, or to be accurate enough that the fin 

drifts by only a negligible amount throughout each fin test. Also, the force measurement 

system currently depends on the forces and torque acting on the fin at a known location. 

Movement of the fin from side to side would require a revision of the force equations derived 

in Section 4.4.2 (page 76), to account for the changing instantaneous fin location. 

It is possible that with no means of reacting forces in the y direction, the thrust production 

would decrease. However, allowing the fin to follow a path in which only thrust can be 
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generated may facilitate greater efficiency. With extra data, the relationship between lateral 

force and thrust could be explored further. 

7.3.12 New Rapid Prototyping Technologies 

Rapid Prototyping (RP) technology is advancing at a considerable rate. Some of the fin 

manufacturing methods devised for the purposes of this thesis relied on technologies that 

have since been improved or made more cost-effective. Other techniques that were judged to 

be unworkable at the time of writing are becoming more viable due to new RP technologies. 

Recent advances are allowing RP models to be built directly from flexible resins, removing the 

need for resin casting altogether. It is even possible to combine resins of different stiffness in 

complex structures within the same model, opening the way for complex biomimetic fin 

replicas to be built, with greater speed and accuracy than has previously been possible. The 

technology removes the need for a fin’s stiffness profile to be dictated by its shape, allowing 

the effects of both to be studied in isolation from each other, as has been proposed in Section 

7.3.9 (page 158). 

7.3.13 Fin Profile Optimisation 

So far, only two stiffness profiles have been tested in this investigation, and one has been 

found to exhibit better performance than the other. Another goal of future experiments should 

be to optimise the design of the fins, through a repeated cycle of testing and modification. To 

achieve this through physical testing alone would be prohibitively time consuming, so such a 

process would require numerical modelling techniques, as described in Section 7.3.10 (page 

159). If an accurate method could be developed for testing fin designs numerically, genetic or 

neural optimisation methods could then be used to improve the designs iteratively. 

7.3.14 Active Stiffness Control 

Another direction in which the research may be taken is to alter the stiffness of a fin while it is 

in use. Stiffness could then be optimised for different oscillation conditions. A team at the 

University of Bath has recently begun working in collaboration with several other universities, 

under a project examining fish locomotion and sensing, funded by the European Union9. One 

of the goals of the collaboration is the creation of a biomimetic propulsion model with an 

internal structure allowing its stiffness to be varied while in use. It is hoped that this project 

may be able to make use of, and further some of the ideas presented in this thesis. 

9 Fish Locomotion and Sensing (FILOSE) – www.filose.eu 
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Appendices


Appendix A : Bathymysis Submarine Project 

A.1 Introduction 

Early on in the investigations described in this thesis, the opportunity arose to design and 

build an underwater Remotely Operated Vehicle (ROV) for use in a variety of applications 

within the research interests of the University of Bath (Figure 114). The specification was for a 

small unmanned robotic submarine, propelled by oscillating fins. It was devised to address a 

specific research need, but gave rise to many questions; these set the course of the subsequent 

experiments and studies, documented in this thesis. The submarine was named Bathymysis, 

derived from Bath, the city, bathos, Greek for depth, and Mysid, the water-dwelling crustacean 

the submarine was, in part, designed to search for. 

0.5 m 

Figure 114: Bathymysis submarine. 

Its uses to date have been: 

•	 Serving as an experimental and educational tool to help students gain an interest in, 

and learn about underwater vehicle design. 

•	 Playing a part in coastal ecology research, specifically by allowing biologists to search 

for Mysids, a food source of Grey Whales. 
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•	 Being used as an experimental platform for flexible fins, to allow assessment of fin 

performance in a real-world application. 

•	 Serving as an exercise in developing a useful submarine at a low cost, through which 

expertise was gained to aid future submarine projects. 

•	 Taking part, in a modified form, in the SAUC-E student autonomous submarine com

petition. 

Bathymysis was a cooperative project; the result of the hard work of a team comprising 

academics, technicians and students. The individuals involved in the construction of the 

submarine are thanked in the acknowledgements section of this thesis. The author acted as 

the submarine’s lead designer from its conception through to its first missions, and takes 

responsibility, but not credit, for all the design decisions described below. Where others took a 

greater role in the design of one of the submarine’s systems or components, their work is 

documented for completeness, and they are duly referenced in the relevant sections. 

A.2 Specifications 

The requirements originally presented for the submarine’s design were as follows. Its size and 

weight had to be small enough to be manageable in the field by one or two people, and able 

to be transported around the world without special shipping arrangements. It was intended for 

use in outdoor field studies, so had to be robust enough to survive the challenges this can 

bring, and able to be assembled and repaired using basic equipment and tools. It was to be 

propelled by experimental oscillating fins, to test their effectiveness in a real world application, 

and to make the submarine less susceptible to becoming tangled in reeds and kelp. It had to 

be versatile enough to support various cameras and experimental equipment, and to be 

capable of descending to a depth of 40 m. 

The sections below break the design of Bathymysis down into categories, and explain the 

reasons behind the decisions that were made. 

A.3 Submarine Structure 

The submarine’s structure comprised an external aluminium frame; a central hull, a long PVC 

cylinder in the centre of the frame; and a chassis inside the hull, supporting the internal 

components. Figure 115 is a CAD model of the submarine, with some parts removed for 

clarity. 
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Figure 115: CAD visualisation of the Bathymysis submarine, showing the chassis and hull. 

A.3.1 Hull 

An important factor in keeping the total cost of the project down was the use of off-the-shelf 

components wherever possible, in place of bespoke manufactured parts. The submarine’s hull 

was made of an 800 mm length of PVC ventilation pipe, 200 mm in diameter, with a wall 

thickness of around 3 mm. Flanges were placed along the length of the pipe to provide 

mounting points, and allow it to be supported in the submarine’s chassis. Flanges were 

carefully sealed to each end of the pipe with a solvent adhesive. These provided a flat surface, 

to which the end covers of the hull could be attached. The pipe and flanges were sourced 

from Wolseley UK10 . 

The hull contained the most sensitive equipment in the submarine – its computer, batteries, 

camera and control electronics. Its purpose was to keep the components safe and dry when 

the submarine was submerged, but it did not have to withstand any static pressure, because 

the hull was designed to operate with its internal pressure in equilibrium with its surround

ings. This is explained fully in Appendix A.4.2 (page 176). 

10 www.wolseley.co.uk 
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A.3.2 Chassis 

The submarine’s chassis was designed primarily by Steve Allen, an undergraduate student at 

the University of Bath, and not by the author of this thesis. 

Purpose 

The purpose of the chassis was to support and protect the components of the submarine. It 

acted as a cage, preventing the more fragile parts of the submarine from coming into contact 

with rocks and other obstacles on the seabed. It held the fin actuator units in position and 

allowed them to be positioned in different configurations, as shown in Figure 124 (page 184). 

The frame also allowed the submarine to be picked up, carried, and hoisted from the water, 

and provided a stable base on which to mount extra equipment. 

Construction 

The frame was constructed from 19 mm L-section and box-section aluminium beams, and 

19 x 3 mm aluminium bar. It was designed to be easily assembled and disassembled in the 

field, and comprised a small number of distinct parts, with most duplicated in several loca

tions. This design choice ensured that any part of the frame could be repaired if it sustained 

damage, with only a small number of parts needing to be kept as spares. 

Corrosion 

An important consideration in the design of structures to be used underwater is the effect of 

galvanic corrosion. Galvanic corrosion occurs when dissimilar metals are immersed in an 

electrolyte, such as seawater, causing a voltage potential to be induced between them. If the 

parts are electrically connected, current flows between them. The metal with the lowest 

electrode potential becomes the anode, and is subject to greatly accelerated corrosion. 

The use of aluminium and stainless steel in the submarine’s chassis meant it was vulnerable 

to galvanic corrosion. The aluminium, being the more reactive metal, was the material at risk. 

Various measures were considered to improve the design, such as painting the frame, adding 

insulating sleeves and washers to isolate the stainless steel nuts and bolts, or avoiding 

stainless steel hardware altogether in favour of nylon fasteners. Another common way of 

mitigating the effects of galvanic corrosion is the addition of a sacrificial electrode, connected 

to the other metallic parts of the craft. The electrode is made of a more reactive metal than 

those used elsewhere in the construction, and its purpose is to undergo gradual decomposi

tion in place of the more important components. 

After consideration of these options, a decision was taken to leave the frame unprotected. Its 

purpose required it to be submerged for only a few hours at a time, unlike, for example, a boat 

or waterborne structure. It was decided that the effort required to protect the chassis from 
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corrosion would be better spent elsewhere. To reduce the frame’s exposure to seawater, 

whenever possible it was rinsed with fresh water after each mission. Over several uses of the 

submarine, some small deposits of aluminium oxide could be seen around the stainless steel 

bolts, but the corrosion was only at the surface of the parts, and no damage to the structure 

occurred. 

A.3.3 Front Dome and Rear Bulkhead 

The hull tube was sealed with end covers, designed to allow access to the hull, to enable 

internal cameras to see the outside world, and to allow electrical and other connections to be 

made between the inside and outside of the submarine. 

Front dome 

The clear polycarbonate dome at the front of the submarine allowed the internal camera to 

see its surroundings over a wide angle. Polycarbonate is an extremely tough material, and does 

not shatter under sudden impact, making it ideal for this use. The dome was made by vacuum 

forming a flat sheet of polycarbonate, using a 200 mm piping flange as a former. This is a 

difficult process, as polycarbonate contains trapped moisture that tends to vaporise when the 

plastic is heated, forming tiny bubbles and causing it to turn opaque. Special care has to be 

taken when heating and preparing the plastic to avoid this. Details of this process can be 

found in Appendix A. 

The front dome was mounted to the submarine by eight stainless steel bolts, which com

pressed a rubber O-ring, forming a seal between the polycarbonate dome and the flange at the 

front of the hull, shown in Figure 116. 

Flange 

O-ring 

Front dome 

Figure 116: Attachment of front dome to the Bathymysis hull. 

Rear panel 

The rear panel was the only flat surface on the submarine’s hull, so it was there that all of the 

connections to the outside world and the other parts of the submarine were mounted. The 

plate was initially affixed to the rear flange of the hull with eight bolts and an O-ring, using the 

same method as the front dome. It was made of polycarbonate sheet, 10 mm thick, and 

270 mm in diameter. Holes were drilled in it to mount the various connectors required, and 

for the bolts to hold it in place. 
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Rear panel revision 

The flexibility of the plastics used for the flange and rear panel meant that the rubber O-ring 

forming a seal between the two surfaces was not always compressed evenly. Variation in the 

tension of the bolts around the panel meant that the seal was not perfect, causing air to 

escape steadily from the submarine while submerged. Another drawback was that the rear 

panel was awkward to remove; its diameter was too large for it to be removed from the rear of 

the external chassis, so it had to be disconnected from the internal chassis before either could 

be extracted from the submarine. 

In view of these shortcomings, the design was later revised to a ‘plug’ assembly, whereby the 

back panel was replaced by a cylindrical acrylic block, with O-rings occupying grooves in the 

sides (Figure 117). This redesign created a more reliable seal, because pressure was evenly 

distributed around the O-rings. It also allowed the back panel to be part of the internal chassis 

of the submarine, greatly simplifying the common task of extracting the submarine’s battery, 

computer and electronics from the hull for maintenance. 

Flange 
Flange 

Rear cover Rear cover 

O-rings O-ring 

Figure 117: Rear panel assembly before (left) and after (right) revision. 

The redesigned back panel was 25 mm in thickness, too thick to mount the connectors. To 

solve this problem, an IP68 rated waterproof container was mounted inside it, so that the 

enclosure’s lid could be separated from the rear panel (Figure 118). The design had a number 

of advantages over the previous method. The wall of the enclosure inside the submarine acted 

as a bulkhead, meaning that in the improbable event of water leaking through any of the 

connectors, it would collect in the enclosure before coming into contact with any of the 

equipment within the hull. It also meant the arrangement of connectors on the rear panel 

could be changed with the purchase of a new waterproof enclosure, rather than necessitating 

the manufacture of an entire new rear panel. 
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Hull 

Figure 118: Layout of Bathymysis’ rear panel assembly. 

A.3.4 Internal Chassis 

First design 

All of the internal components were mounted on a frame located inside the submarine’s hull. 

The frame could be pulled out of the hull to allow access to all of the parts. The frame was 

constructed from three parallel glass-fibre nylon composite rods with circular acrylic plates 

dividing the internal sections of the submarine. Shelves were supported between these 

dividers, which could be moved, along with the supporting walls, and reconfigured to allow 

efficient use of space. A picture of the submarines internal components is shown in Figure 

119. 

Figure 119: Bathymysis’ internal structure. 

The chassis served its purpose well; the only drawback to its design was that the shelves were 

time consuming to remove, being held in place by bolts, which were tricky to access. Frequent 

maintenance and modifications to the components during the design stage meant that a more 

convenient solution became necessary. 
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Updated design 

This part of the design process was conducted by Keri Collins, a postgraduate student and 

member of the submarine team, not by the author of this thesis. 

Figure 120: CAD model of the submarine's internal chassis. 

When the rear panel of the submarine was redesigned, as described in Appendix A.3.3 (page 

172), the opportunity was taken to modify the internal structure (Figure 120). New dividing 

walls were designed, to allow easier adjustment of the internal sections. The walls included 

replaceable rapid prototyped inserts to support the shelves, meaning the design was much 

more flexible in the event of changes and upgrades to the submarine’s hardware. The redesign 

allowed the component shelves to be removed from the chassis sideways, without tools, and 

requiring no adjustment to the dividing walls. 

Internal layout 

The following configuration was selected for the internal layout of the submarine, shown in 

Figure 121: 

Peripheral electronics 

Camera 

Motherboard 
Battery 

Motor 
controllers 

Figure 121: Internal layout of Bathymysis submarine. 

The motor control circuitry was located at the rear of the submarine, so that the power cables


running to the motors did not have to be routed past any of the more sensitive circuitry. The
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battery was in the centre, to ensure even weight distribution and put some distance between 

the motor controllers and other electronics. The motherboard and control electronics were at 

the front of the submarine, near the camera, which pointed out of the front window. 

A.4 Pneumatic System 

A.4.1 Air Supply 

Bathymysis was equipped with a 3 litre compressed air tank, to supply air for pressure 

regulation and other uses. The tank was a scuba diving reserve cylinder (known as a pony 

tank) capable of holding air at up to 232 bar; plenty for several dives to maximum depth and 

back to the surface. A second tank, made by Spare Air11 was purchased, with a much lower 

capacity of 0.42 litres. This tank was useful for missions in which the submarine’s mass 

needed to be kept to a minimum. 

A.4.2 Pressure Compensation 

Submarines have to be designed to survive the pressure of the lowest depths to which they are 

intended to dive. Some have thick, sealed hulls, strong enough to withstand the external 

pressure. Others have flooded or oil-filled hulls, which compress with very little change in 

volume, so are in no danger of imploding. A common design among deep-water AUVs is to 

house any parts that have to be surrounded by air in a thick, two-part glass sphere, and for all 

other components to be flooded with oil, to ensure incompressibility. 

Bathymysis used another method, similar to a scuba diver, whereby the pressure of the air 

inside the submarine was increased as it descended, to cancel the effect of the external 

pressure on the hull. This allowed for a much thinner hull, and simplified the submarine 

design in many areas. It was a particular advantage for Bathymysis that the seals did not have 

to withstand any external pressure, as the four moving fins that propel the submarine had to 

be driven by rotating shafts, via seals. If these seals had to withstand the difference in pressure 

between the atmosphere and the maximum dive depth, they would have to have been much 

stronger, wasting a lot of power through friction, and requiring more power to drive the 

motors. 

Mechanical pressure compensation 

The mechanical pressure control system was based on modified scuba diving equipment. A 

scuba diver’s air supply normally consists of a high-pressure tank, a first-stage regulator to 

11 www.spareair.com 
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reduce the pressure to around 10 bar, and then a second-stage regulator, to supply the diver 

with air at the ambient water pressure. The tank and first stage regulator were attached below 

the submarine, and the second stage regulator was mounted in the wall of one of its auxiliary 

housings. The regulator contained a flexible rubber diaphragm which, when the external 

pressure increased, deflected inward. The displacement caused an air valve to open, releasing 

extra air into the submarine. The consequent rise in internal pressure pushed the diaphragm 

out again, back to its normal state. 

As the submarine rose and the external pressure dropped, the submarine released air via a 

spring-loaded dump valve, to keep the internal pressure at a safe level. The dump valve, 

designed for use in a scuba diving drysuit, was designed to release air when the pressure 

differential reached approximately 2 psi (0·14 bar). 

Electronic pressure compensation 

The original intention for Bathymysis was that its pressure regulation system would be entirely 

software-controlled, with a mechanical system remaining in place as a backup. The advantage 

of this kind of system is that it would be able to respond more accurately to changes in the 

external pressure and orientation of the submarine. For example, if the orientation of the 

submarine changed such that one of the fin axle seals was deeper in the water than the 

pressure regulator valve, the external water pressure at the seal would be higher than at the 

regulator, and the seal would therefore be at risk of leaking. However, if the onboard computer 

controlled the pressure, the system would be aware of the orientation of the submarine, and 

be able to raise the internal pressure of the submarine accordingly. Using this system, the 

submarine could operate safely even when upside-down, which would be very risky using a 

purely mechanical design. 

Another advantage of electronic pressure control is that the computer would be able to 

monitor the amount of air being released into the submarine, which could serve as an early 

warning system for hull integrity. For example, if the hull were to spring a leak and start 

releasing air to the water, the computer would notice it was supplying an abnormally large 

volume of air to the hull, and trigger an alarm. 

Initial tests on the mechanical pressure regulation system proved it to be very effective and 

reliable on its own. Since the submarine was weighted in such a way as to ensure it always 

stayed in an upright orientation, it was decided that the extra time and effort needed to add 

the electronic pressure regulation system was unwarranted. 
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A.4.3 Buoyancy control 

The first option considered for controlling the submarine’s buoyancy was to use an inflatable 

bladder. It was to be connected to the submarine’s air supply via a solenoid valve, and 

protected against over-inflation by a spring-loaded relief valve. Another solenoid valve would 

allow air in the bladder to vent to the water, reducing the submarine’s buoyancy. The air 

release system presented some problems based on the submarine’s orientation. The air had to 

be released from a point higher than the bladder, where the water pressure is lower. This 

could have been achieved by running tubes to several points around the submarine, terminat

ing in one-way valves, such that one of the valves was always higher than the bladder. 

After consideration, it was decided that active buoyancy control of the submarine was not 

necessary at the current stage in its development. The design of its propulsion system allowed 

thrust to be vectored up or down, so depth control could be achieved by powered manoeu

vring. For safety, the submarine was designed to be slightly buoyant, so that in the event of a 

drive system failure it would float to the surface. The only drawback of this method was that a 

small amount of downward thrust was necessary to maintain a fixed depth, which brought 

with it a small expenditure of energy. This was deemed a worthwhile cost for such an impor

tant fail-safe feature. 

A.5 Control System 

Although the submarine was primarily intended for use as a tethered ROV, it carried onboard 

all the equipment necessary to function with no external connections. For remote-controlled 

use, the only connection it needed with the surface was an armoured ethernet cable. The 

different elements that made up the submarine’s control system are described in the sections 

below. 

A.5.1 Power Supply 

The space designed for the submarine’s power source could hold several different configura

tions of batteries. Tests performed to date have used a single 12 v, 17 amp-hour lead acid 

battery, but to make more efficient use of space and increase operating time, two or three 

smaller lead acid batteries can be used together. Sealed deep-cycle lead acid gel batteries were 

selected, because of their robust simplicity and good capacity-to-cost ratio. Different battery 

technologies such as nickel-metal hydride or lithium-ion cells offer improved power capacity 

for the same volume, and these may be considered in future revisions of the submarine. 

Power requirements 

The power requirements of the submarine were as follows: 
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• Peak demand while starting up: 4.0 A 

• Fins flapping (no resistance): 3.5 A 

• Idle: 3.3 A 

These measurements were taken while the submarine was out of the water, and therefore with 

very little drag acting on the fins. This explains their very low power consumption. But with a 

fully charged 17 Ah battery and a reasonable safety margin, an endurance of 3-4 hours could 

be expected, depending on the submarine’s level of activity. 

A.5.2 Onboard Computer 

The complex movement required of the submarine’s fins meant that an on-board motion 

control system was required. An EPIA-PD6000E Mini-ITX fanless 600 MHz low-power 

motherboard was chosen as the submarine’s onboard computer, and combined with a 20 GB 

hard drive and 512 MB RAM (Figure 122). 

Figure 122: EPIA­PD6000E motherboard used in the Bathymysis submarine. 

It had the following advantages: 

• Small size (fits inside 200 mm pipe) 

• Relatively low power requirements (15-25 W) 

• Runs standard PC operating systems 

• Several input/output ports (serial, USB) 

• Low cost, readily available consumer product 

The computer ran the Windows XP operating system, which proved sufficient for the subma

rine’s requirements. It was chosen for its compatibility with hardware, and the ease with which 
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it could be implemented. Given the ample power of the onboard computer, its undoubted 

inefficiency did not prove problematic, but in future it may be realistic to switch to LINUX, or a 

real-time operating system that can handle the complex control systems better. A leaner OS 

would also allow the use of a solid-state hard disk, as opposed to the mechanical one 

currently in use. This would save power, and remove a potential weak point in the design by 

making the onboard computer more robust. Mechanical hard drives contain air, and although 

they are not hermitically sealed, if the air within the submarine compresses or decompresses 

faster than the hard drive’s air pressure can equalise, the force exerted on the drive’s walls 

may cause damage. 

A.5.3 Sensors 

The submarine was equipped with a variety of sensors, connected to the onboard computer 

via interface electronics. 

Accelerometer 

The accelerometer module was an ADLX-ADC, made by Procyon Engineering12, utilising three 

Analog Devices13 ADXL202 accelerometers. It was capable of measuring acceleration up to 2 g 

in any direction. It was used to detect the orientation of the submarine, by measuring the 

direction of the earth’s gravitational pull. The sensor was connected to an electronic interface 

circuit, which converted its output to a serial data signal, which was passed to the onboard 

computer. 

Compass 

A solid-state electronic compass was used for navigation. Electronic compasses are reliable, 

containing no moving parts. Instead they use semiconductors exploiting the Hall effect to 

sense magnetic fields. A Honeywell HMC6352 sensor was selected, which could detect its 

orientation with respect to the earth’s magnetic north, to within a few degrees. It was inter

faced to the submarine's computer in the same way as the accelerometer. The accelerometer 

and compass could then be used together to detect the orientation of the submarine in every 

axis. 

12 www.procyonengineering.com 

13 www.analog.com 
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Camera 

Bathymysis was equipped with a camera to allow it to be used for undersea survey work. A 

Logitech14 QuickCam Orbit webcam was chosen, for its ability to interface simply and directly 

with the computer, and for its pan and tilt function. The camera was placed in the front dome 

of the submarine, where it had a wide field of vision. The onboard computer received the 

images from the camera, and sent them to the surface via the Ethernet link. The software also 

enabled remote panning and tilting of the camera. 

Pressure sensing 

The submarine was equipped with two electronic pressure sensors, interfaced to the computer 

via an analogue to digital converter. It was necessary to take readings of the pressure both 

outside (i.e. depth) and inside the submarine. This could have been achieved by a number of 

different sensor configurations. The design explained below was chosen because it only 

required one of the sensors to be exposed to the submarine’s external environment, and it 

provided good accuracy in detecting the difference between internal and external pressure – 

the reading most critical to the submarine’s safety. It also proved to be a cost-effective way of 

monitoring the pressures. 

Absolute pressure gauge 

A Honeywell15 SenSym ASDX series signal conditioned pressure transducer measured the 

internal pressure of the submarine, in relation to an internal reference vacuum. It was capable 

of measuring pressures of up to 10 bar, which corresponds to a depth of approximately 

100 m. It did not need to come into contact with water, meaning it was much less expensive 

than comparable ‘wet’ pressure sensors. 

Differential pressure gauge 

A Honeywell 143PC05D signal conditioned precision pressure transducer was used to 

measure a positive or negative difference in pressure between its two ports, up to ±5 psi 

(0.34 bar, equivalent to 3.5 metres in water). One of these ports was compatible with wet air 

(although not direct contact with seawater), and the other was not. Therefore the wet air 

compatible port was connected to the outside of the submarine via a thin, air-filled spiral-

wound tube (Figure 123). 

14 www.logitech.com 

15 www.honeywell.com 
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Figure 123: Spiral pressure measurement tube on Bathymysis. 

As the pressure differential between the outside and inside of the submarine increased, the air 

in the tube was compressed, transmitting the external pressure to the port of the pressure 

sensor, while the seawater being measured was kept some distance from the fragile sensor. 

The tube was thin enough that whatever its orientation, water was unable to flow along the 

tube to the sensor, being held back by surface tension. 

It was important that the pressure inside the submarine was kept slightly higher than the 

external pressure (see Appendix A.4.2, page 176, for details) so the sensors needed to give an 

accurate reading of the difference in pressure. If an absolute pressure gauge had been used to 

measure both internal and external pressure, they would both have had to operate over the 

wide range of pressures that the submarine will experience. The difference between the two 

readings (which is critical to the submarine’s safety) would have been a tiny fraction of their 

total range, which could lead to errors. Using a narrow range differential sensor in combina

tion with an absolute sensor for internal pressure gave better accuracy in the differential 

measurement, and still allowed external pressure to be calculated: 

PE = PI + ∆P (53) 

Where PE is the calculated external pressure, PI is the reading from the internal pressure, and 

∆P is the reading from the differential pressure sensor. 

Sensor interface circuit 

The sensor interface circuit was designed and built by Jeff Brewster, an instrumentation 

engineer at the University of Bath. Its role was to allow communication between the subma

rine’s sensors and the PC motherboard. It incorporated a Microchip16 PIC16F877 microcon

16 www.microchip.com 
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troller, programmed using MELabs PICBASIC Compiler17 , which received simple serial 

commands via an RS-232 interface, read the appropriate sensor, and sent the data back to the 

PC. 

It allowed the submarine’s computer to monitor the voltage of the batteries, the current being 

consumed by the submarine, the accelerometer readings, the compass heading, and the 

internal and external pressure. 

Other sensors 

These sensors were not implemented on Bathymysis in its first design iteration, but have been 

investigated, and are likely to be added at some stage in its future development. 

The internal compartments of the submarine could be fitted with leak detection loops: 

parallel, uninsulated wires, between which a small current could flow if water was present. 

These were to be connected to the onboard computer via the sensor interface circuit, and 

would mean the submarine could be programmed to abort its mission and surface immedi

ately if water was detected inside any of its compartments. This was a highly unlikely circum

stance, due to the positive internal pressure of the submarine (Appendix A.4.2, page 176). 

The frame may in future be fitted with sensors to detect physical contact with rocks and other 

obstacles. This may aid navigation though obstacles outside the onboard camera’s field of 

vision. 

The simplest implementation of sonar on the submarine would be the addition of a depth 

sounder, pointing down to the ocean floor. Another forward-pointing sounder could be added 

to provide advance warning of obstacles as the submarine moves forward. More advanced 

sonar systems such as the CruzPro18 PcFF80 PC Fishfinder could be added, which is able to 

detect multiple reflections of the same sonic ‘ping’ in order to build up a map of reflective 

objects in its beam. The use of a standard PC as the onboard computer, and the processing 

power that it brings means there are many more options that can be considered if sonar is 

found useful. 

Another useful function of the submarine would be to record the conditions in the water as it 

caries out studies. Properties such as salinity, temperature and visibility will be easy to 

measure, and will provide valuable extra data for the user. 

17 www.picbasic.co.uk 

www.cruzpro.com 
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As one of the uses of Bathymysis is to carry out ecological field surveys, it may eventually be 

fitted with specific tools to help it carry out its tasks, for example, to collect live samples of 

Mysids from study areas for analysis. 

A.6 External Compartments 

External compartments outside the main hull housed some of the submarine’s components. 

The waterproof compartments were connected to each other via flexible hoses, to allow air to 

flow between them, equalising the air pressure in different sections of the submarine. Some of 

the hoses acted as cable conduits, allowing transmission of electrical power and signals 

between the compartments. 

A.6.1 Buoyancy and Pressure System 

Two compartments underneath the hull of the submarine housed the buoyancy and pressure 

control equipment. The equipment was less sensitive to the ingress of water than the contents 

of the main hull; this is why it was placed at the lowest point of the submarine. For water to 

enter the submarine, a simultaneous failure of both hull integrity, and the pressure regulation 

system would be required. Either of these failures occurring on its own would have been 

detected rapidly, and caused a mission to be aborted safely. The arrangement of the subma

rine compartments ensured that the main hull would be the last area to flood under such 

circumstances. 

A.6.2 Fin Control Boxes 

The fin control mechanisms were housed in boxes on the sides of the submarine, and could 

be affixed to the chassis in different configurations, as shown in Figure 124. Their internal 

design is described in Appendix A.7. 

Figure 124: Bathymysis fin configurations. 
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A.6.3 Interconnections 

The submarine was designed to maintain a positive internal air pressure at all times (a design 

decision explained in Section A.4.2, page 176). One of the benefits of this choice was that the 

connectors did not have to be specified to withstand the pressures to which the submarine 

was required to descend. The IP6819 international standard indicates protection against long 

periods of immersion in water at depths of greater than 1 m; no upper depth limit is specified. 

Although IP68 parts would rarely be designed for operation at the depths of more than a few 

metres, as long as any air inside the submarine was pressurised to approximately the same 

level as the environment, the pressure differential across the connectors would be inside their 

specified limits, and ingress of water would not be possible. 

The ability to use relatively inexpensive IP68 connectors instead of more robust wet-connect 

parts commonly found on commercial submarines reduced the cost of the submarine 

considerably, but some precautions had to be taken during assembly to ensure the reliability 

of this method of connection. Special care was taken to ensure that any pockets of air inside 

the connectors had a path to the air inside the submarine. This way, no unpressurised air 

cavities would exist inside the connector, which could fill with water at depth. 

19 International standard IEC 60529 
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A.7 Drive System 

A.7.1 Fin Actuators 

Each of the four fins was actuated by a mechanism housed in a waterproof box, and con

nected to the hull of the submarine via a flexible tube (Figure 125). 

200 mm 

Figure 125: Bathymysis fin actuator assembly. 

Each box contained a 15 W Maxon20 A-max 32 brushed servomotor, with a Maxon GP 32 K 

35:1 ratio planetary gearbox and HEDS 5540 digital position encoder. The motors were each 

mounted on a polycarbonate chassis, which contained a pair of bevel gears to change the axis 

of rotation perpendicular to the motor, and reduce its speed by a further 50%. The fin axle 

protruded from the mounting plate of the chassis, passed through a seal in the outer case, and 

connected to the fin via a standardised mounting bracket, designed to allow a variety of fins to 

be connected to the motor and changed easily. A CAD model of the gear assembly is shown in 

Figure 126: 

20 www.maxonmotor.co.uk 
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Motor 

Encoder 

Fin axle 
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Chassis 

Figure 126: Fin actuator mechanism from the Bathymysis submarine. 

A.7.2 Fins 

The modular design of the submarine meant that different fin designs could be tested. The 

first set of fins produced were simple pieces of polypropylene sheet. They were capable of 

propelling the submarine, and served it well during testing. However, it was apparent that they 

were too flexible, and that the submarine’s motors were capable of delivering more mechanical 

power to the fins than they could efficiently convert to thrust. 

A search was carried out for inexpensive and readily available materials with which to make 

more powerful fins. Two pairs of children’s swimming flippers were selected, and modified to 

form a set of fins capable of delivering enough thrust to manoeuvre the submarine. Despite 

their amateurish appearance, the flippers performed well. Their dimensions were greater than 

the sheet fins, and they were stiffer, although still compliant enough for some flex to be 

induced by the pitching of the axles. The comparative performance of the two sets of fins is 

discussed in Section A.8 (page 190). 

A.7.3 Motor Control System 

Hardware 

The submarine’s onboard computer controlled the motors, via interface electronics. Each 

motor’s encoder was connected to a single DAQChina21 Industrial Automation 

21 www.daqchina.net 
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normDAQ-5003 4-channel quadrature encoder counter (Figure 127), which kept track of the 

motor’s position and passed it on to the computer via an RS-232 interface. 

Figure 127: normDAQ­5003 quadrature encoder counter module (USB version). 

The computer controlled the speed of the motors via a separate interface circuit, again 

controlled by an RS-232 interface. The circuit converted commands from the computer into 

direction and Pulse Width Modulated (PWM) signals with a duty cycle from 0 to 100%. These 

logic-level signals were passed on to a pair of Procyon Engineering22 MotorDriver V1.0 H-

bridge driver boards (Figure 128) capable of supplying up to 3A to two motors each. 

Figure 128: Procyon Engineering MotorDriver v1.0. 

22 www.procyonengineering.com 
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Figure 129 shows a schematic of the motor control system as a whole.
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Figure 129: Motor control schematic for the Bathymysis submarine. 

Software 

The onboard computer ran a program that continually received information from the encoder 

counter module, and used it to calculate the orientation of each fin. The program received 

commands to tell it where the fins should be pointing. It then applied power to each motor at 

a predetermined duty cycle until it reaches the desired position, at which point it cut the 

power and waited for the next command. The duty cycle determined the speed at which the 

fins moved, and as this was nearly linear for each half-cycle of the wave, the overall waveform 

was approximately triangular. 

A problem was encountered while designing the fin control software; the system relied on low-

latency communications between the PC and motor control electronics. Occasionally there 

would be a pause in the data stream coming from the encoder reader, which meant the 

software no longer knew the position of the fin. Pauses in communication would last half a 

second or less, but this was long enough to cause a disturbance in the movement of the fin. A 

workaround was developed in which the software would extrapolate position data from 

previous two readings in the event of a pause in the data input, and this improved the fins’ 

behaviour considerably, making the deviations in position barely noticeable. However the root 

cause of the problem was in the PC’s drivers, which did not prioritise serial communications 

over other multitasking obligations. The way serial communications are handled are inherent 

to the operating system (Windows XP), so to fix the problem altogether, a new, real-time 

operating system would need to be selected. Alternatively, the control system could be moved 
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out of software entirely with the addition of dedicated motion control hardware for each 

motor. 

Future phases of the submarine’s development will see a more advanced control system, 

capable not only of moving each fin to a fixed position, but of following a path, in order to 

generate a range of different fin oscillation waveforms. The first steps towards accomplishing 

this goal have already been taken, and are described in Appendix A.9 (page 192). 

A.8 Performance Experiments 

A.8.1 Methods 

During the development of the submarine, its straight line speed was tested as an indicator of 

its overall performance. The submarine’s software allowed the power output to the motors to 

be controlled, and this setting, from 0-100% of full power, proved to be the simplest method of 

controlling the submarine’s speed. At this stage in its development, the oscillation amplitude 

could be controlled, but not the frequency. Reducing the power whilst keeping the fin 

amplitude constant meant that oscillation frequency reduced as a consequence. All the tests 

on the graph below were performed at a fixed amplitude of 40° peak-to-peak. The speed was 

measured by timing the submarine over a fixed course of 0.75 m, which although short, was 

timed accurately enough to yield useful speed data. 
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A.8.2 Results


Figure 130 shows the steady-state straight line speed of the submarine over a series of tests 

using the polypropylene flippers as fins. The performance of the polypropylene sheet fins is 

also indicated on the graph, although unfortunately only one data point exists for the sheet 

fins at this amplitude. It is, however, enough to show a significant difference in performance 

between the two designs, highlighting the importance of fin selection in the submarine’s 

design. 
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Figure 130: Submarine speed against fin power, 40° oscillation amplitude. 
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A.9 Applications 

A.9.1 Costal Ecosystems Research Foundation 

The submarine has also been used by the Costal Ecosystems Research Foundation (CERF) in 

British Colombia, Canada. Among many research interests, CERF studies Grey Whale 

(Eschrichtius robustus) populations, whose migratory path takes them up the pacific coast 

every summer, and was specifically interested in shrimp-like creatures of the Mysidacea group 

(Figure 131), on which the whales feed. 

Figure 131: Mysid shrimp (Photo: Linden Gledhill). 

A.9.2 SAUC­E Autonomous Submarine Competition 

Bathymysis was an entrant in the 2006 ‘Student Autonomous Underwater Challenge – 

Europe’. SAUC-E is a competition in which autonomous submarines from academic institu

tions across Europe compete against each other to complete a list of tasks, without any 

external control, relying solely on sensor readings and programming. The tasks in 2006 were 

as follows: 

• Submerge and pass through a validation gate (Figure 132) 

• Make contact with a mid-water marker buoy 

• Identify a target on the ground and drop a marker as close to its centre as possible 

• Surface in a predefined recovery zone 

The submarine was equipped with extra hardware and software by a team of students to allow 

it to complete the competition tasks. The control system was redesigned using LabVIEW (see 

Appendix F) to manage the navigation and mission control (Klimaytys, 2006). Image recogni

tion algorithms were developed and tested to allow the submarine to discern the targets from 

visual input (Wallis, 2006). 
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Figure 132: The Bathymysis submarine taking part in the SAUC­E competition, 2006. 

Further details on the design and abilities of the submarine in its autonomous configuration 

are beyond the scope of this thesis but can be found in related works (Collins, 2006, Riggs, 

2006). 

A.9.3 Subsequent Work 

An alternative, and more conventional propulsion system was developed for the submarine, 

using propellers instead of fins (Pattinson, 2006). The modular design of the rest of the 

submarine made it relatively simple to retrofit and incorporate this with the existing work. 

Preliminary work was carried out on another biomimetic propulsion system, using an undulat

ing, gymnotiform motion (see Section 2.3.1, page 28) (Sellen, 2006). 

Further work was carried out on the 4-finned biomimetic propulsion system with which the 

submarine was developed (Brindlinger, et al., 2006). Its control system was overhauled, by 

adding a custom-built motion control circuit to each fin motor, to free up the main computer 

for other tasks. Each fin was capable of receiving a target waveform from the submarine 

computer, and following it using PID control. 

Another aspect of the continuing research on the submarine was an analysis of its hydrody

namic performance using computational fluid dynamics (CFD) tools (Waterhouse, 2006). 

Figure 133 shows examples of some of the results gathered, for straight-line drag. The left-

hand diagram shows the pressure distribution around the hull and frame, highlighting the 

effect on hydrodynamic performance of the many forward-facing flat surfaces. The right-hand 

diagram shows the velocity distribution in the water surrounding the submarine. 
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Figure 133: CFD results showing pressure distribution (left) and flow velocity (right) (Waterhouse, 

2006). 

The work made recommendations of improvements to the submarine’s design that would 

reduce drag, but there are many design considerations aside from drag that any potential 

design changes must be weighed against. 

A.10 Conclusions 

The Bathymysis submarine has proved useful in a variety of areas. The Coastal Ecosystems 

Research Foundation (CERF) made use of the submarine in a field study in British Colombia 

in 2006, and has continued to use submersible ROVs designed at the University of Bath to 

carry out research tasks in British Colombia in subsequent years. 

The Bath University Racing Submarine team (BURST) won one of the runner-up awards in 

the first annual ‘Student Autonomous Underwater Challenge – Europe’ (SAUC-E) competition 

of 2006, and the submarine won praise for many of its design features. Its basic design and 

modular structure were employed in several other autonomous submersible vehicles, and 

descendants of Bathymysis have gone on to enjoy success in several subsequent SAUC-E 

competitions. 

The tests performed on the Bathymysis were somewhat crude and far from exhaustive, but 

they clearly showed the need for further investigation of flexible fin propulsion. The fins used 

in the tests were not optimised for their application, but the large difference in the perform

ance of the two different sets showed the potential performance benefits of using appropriately 

designed fins. It was decided that an appropriate next step would be to undertake a thorough 

literature survey, in an effort to identify areas with scope for further research, within the field of 

flexible fin design. 
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Appendix B : Calculations 

B.1 Nondimensional Plunge Velocity Conversion 

Jet Characteristics of a Plunging Airfoil (Lai and Platzer, 1999) uses nondimensional plunge 

(heave) velocity as a parameter. It is the ratio between the maximum foil plunge velocity, and 

the velocity of the flow, and is defined as: 

2πfa 
kh = p 

(54) 
U 0 

Where f is the plunge frequency, ap is the plunge amplitude, and U0 is the free stream velocity. 

Since double the plunge amplitude (2ap) is interchangeable with the wake width, the nondi

mensional plunge velocity is the same as the Strouhal number multiplied by π. Therefore the 

figures quoted from the paper in Section 2.6.2 (page 38) have been converted to conventional 

Strouhal numbers, for easier comparison with the findings of other papers. 
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Appendix C : Supplemental Methods 

C.1 Shore Hardness Testing 

The Shore hardness scale is an indentation hardness test frequently used to define the 

properties of polymers. It characterises a material’s resistance to deformation by a hard 

indenter of a predetermined shape. This is measured by observing the depth to which the 

indenter sinks into a material under a given load. 

Shore hardness ratings consist of a letter and a number. The letter represents the type of test 

carried out, and the number is a measurement of hardness from 0 to 100; the higher the 

number, the harder the material. The Shore hardness test is empirical, and not directly related 

to any other properties of the material. While useful for comparing similar materials, in this 

thesis it was rejected in favour of the Young’s modulus, which relates more directly to the 

measured behaviour of the fins. 

C.2 Procedure for Vacuum Forming a Polycarbonate Dome 

Figure 134 shows the polycarbonate dome used for the front of the Bathymysis submarine’s 

hull. 

Figure 134: Polycarbonate dome from the front of Bathymysis. 

1.	 Cut 2 mm or thicker polycarbonate sheet to about 19" square. A smaller size than this 

may allow it to pull free from the vacuum former clamp and let air in. 

2.	 Polycarbonate absorbs water from the air around it, which, when heated, expands, 

causing tiny bubbles, and turning the sheet opaque. If possible, dry the 2 mm polycar

bonate sheet at 120°C for at least 3 hours. Thicker sheet requires more drying time 

(see Table 12). 

Page 196 of 220 Paul Riggs 



The Use of Flexible Biomimetic Fins in Propulsion	 June 2010 

Guage Drying Time 
(mm) (hours) 
1 1 
1.5 1.5 
2 3 
3 6 
4 10 
5 16 
6 23 
8 32 

Table 12: Polycarbonate drying times (Source: www.bayplastics.co.uk). 

3.	 Place a 200 mm PVC flange, as used in the construction of the submarine on top of 

the circular MDF mounting, and place it on the supports, at a height of at least 

100mm. 

4.	 Set the middle 2 heaters on the Formtech 450 vacuum former to just under 5, and 

the outer one to just over 5 (the plastic here needs to be very soft here, and bubbling 

doesn't matter). 

5.	 Wait for heaters to reach full temperature. 

6.	 Clamp plastic onto the vacuum former securely, and position the heater over it. 

7.	 Watch the plastic carefully. Initially, asymmetrical thermal expansion will cause it to 

bend upwards towards the heaters, then as it starts to soften it will sag down again. 

Tap it gently to see how soft it has become, but avoid touching the area that will form 

the window. This stage is critical. Overcooking the plastic may cause it to bubble and 

turn opaque. Not heating it enough will not allow it to form properly. 

8.	 When the sheet is ready to form, pull the vacuum former’s lever firmly to push the 

mould up through the soft plastic. Pulling it too fast will pull the plastic out of the 

clamp, and too slow will allow the plastic to cool down before it can be formed. As 

soon as the lever is locked in place, switch on the vacuum pump. Ambient pressure 

should now push the polycarbonate down into the mould. Be careful not to let it bot

tom out on the base of the forming machine. Be warned the former keeps extracting 

air for a fraction of a second after you release the switch. When the plastic has cooled 

and hardened, blow air in to help release it from the mould. 
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Appendix D : Fin Fabrication Techniques 

In order to test different shapes and sizes of fin, it was necessary to build apparatus to 

fabricate the fins in an accurate and repeatable way. Several methods were considered for this 

process. Section 3.2 (page 57) covered the selection and testing of an appropriate resin from 

which to mould the fins. This appendix describes the alternative fabrication methods that were 

considered, and the testing and development carried out in search of the most appropriate 

one, based on such factors as accuracy, repeatability, and cost. 

D.1 Resin Casting 

Resin casting is a common way of reproducing irregular shapes very accurately. A positive 

mould is created, and immersed in resin to create an intermediate negative mould, from which 

further positive copies are made. The process is illustrated in Figure 135. 

a) b) c) Moulding resin d) 

Positive mould Moulded shape 

e) f) g) Model resin h) 

Figure 135: The resin casting process. 

Table 13 shows the advantages and disadvantages of such a method. 
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Advantages 

• Extremely accurate reproduction of arbitrary source shapes. 

Disadvantages 

• Process requires a positive mould for each fin shape required. 

• Costly in both time and resin 

Table 13: Advantages and disadvantages of a deformable fin mould. 

The positive mould could be created using a variety of techniques, chosen to achieve the best 

results, or could even be a real fin taken from an aquatic animal. However, since the ability to 

produce precise replicas of biological forms was not required in this investigation, the resin 

casting method was rejected in favour of less costly alternatives. 

D.2 Deformable Half­Fin Mould 

The following method employed a reusable, deformable mould, which allowed fins to be 

produced in a variety of shapes, at minimal cost. 

Flexible plastic sheet 

Nuts to adjust thickness 

Figure 136: Fin moulding apparatus. 

Figure 136 illustrates the process. A flexible plastic sheet formed the contoured part of the fin 

mould, and was held between two rigid aluminium plates. The mould was of fixed width and 

length, but the shape of the plastic sheet could be controlled by moving the supports up and 

down beneath it. After the profile of the fin had been defined by moving the supports to the 

correct positions, the edges were sealed using Copydex23, a latex-based adhesive. Then, resin 

was poured into the mould and allowed to set, forming a half-fin shape, as shown in Figure 

137 a) below. The resulting shape was then cut in two and folded over on itself, and the two 

halves glued together. Silicone is a difficult material to glue, but after some experiments, 

silicone bathroom sealant was found to bond the two halves securely, while still allowing 

flexibility. 

Copydex, Henkel, Winsford, Cheshire, CW7 3QY 
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Advantages 

• Uniform fins can be produced with a range of cross-sectional profiles. 

• The cost per fin produced is very low. 

Disadvantages 

• The initial creation of the mould is more complex. 

• Axle cannot be moulded into the fin. 

• The width and length of the fin are not variable. 

• Difficult to achieve accurate fin thickness by varying resin volume alone. 

• Layer of glue and 2-part design affect stiffness of fin. 

• Impossible to achieve thin, feathered trailing edge. 

The Use of Flexible Biomimetic Fins in Propulsion June 2010 

a) b) c) 

Figure 137: Fin moulding procedure. 

The method’s advantages and disadvantages are shown in Table 14. 

Table 14: Advantages and disadvantages of a deformable fin mould. 

The fin mould was used for some early experiments. Its inaccuracy and numerous other 

disadvantages meant it was quickly superseded by more reliable, repeatable methods. 

D.3 Use of Rapid Prototyping Equipment 

Rapid prototyping (RP) machines provide a way to create 3-dimensional shapes quickly and 

easily from computer models. A Stratasys Dimension BST24 rapid prototyping machine was 

used to create the models used in this thesis. More information about rapid prototyping and 

the equipment used can be found in Appendix E.1 Incorporating the RP machine in the 

process of fin fabrication allowed very fine variation of fin sizes and shapes. 

www.stratasys.com. See Appendix F. 
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To produce CAD models of aerofoil shapes, aerofoil design software25 was used to create a set 

of points describing a standard NACA profile, and these points were imported into the CAD 
26 system . 

D.3.1 Positive RP mould 

Rapid prototyping is a suitable method for producing a positive mould for the resin casting 

technique described in Appendix D.1 (page 198), but it was not pursued, for the reasons of 

cost and complexity described in that section. 

D.3.2 Negative RP mould 

A parametric CAD model was designed to produce a double-sided vertical fin mould from a 

set of points defining the fin perimeter, in a standard NACA 0012 aerofoil shape (Figure 138). 

The resulting model was built using the rapid prototyping machine. 

Figure 138: CAD model of the configurable fin mould. 

The seam around the mould proved slightly leaky, but could be sealed using latex adhesive. 

The test fin produced as a proof of concept was approximately half the intended scale, and 

the result was promising, but producing large models on the RP machine also has drawbacks. 

The advantages and disadvantages are described in Table 15. 

25 ‘naca45’. See Appendix F. 

26 UGS Solid Edge. See Appendix F. 
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Advantages 

• Fins are not restricted to being rectangular; they can produced in a wide variety of 

shapes. 

• The dimensional tolerance and surface finish of the fin are very accurate. 

Disadvantages 

• Each mould uses a substantial volume of costly RP material. 

• Building tall, thin models can present problems for RP machines, yet building the 

model on its side would make poor use of the machine’s resolution. 

Table 15: Advantages and disadvantages of a negative RP mould. 

D.3.3 RP Former 

A need to economise on the amount of RP material necessary per mould inspired the 

following design. Instead of the whole mould being made of RP parts, RP was only used for the 

ends of the mould, and these supported a flexible sheet, which acted as a moulding surface for 

the fin. The design is shown in Figure 139. The RP mould formers were clamped opposite 

each other, against an L-section aluminium bracket. The small protrusions on the bottom and 

sides of the formers helped to locate them against the inside surfaces of the bracket. A bar 

passing through the clamping holes in the mould formers was used to clamp them securely in 

place (the clamping rod is visible in Figure 141). 
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End plugs 

100 mm 

z 

x 

y 

L-section bracket 

Mould formers 

Clamping point 

Figure 139: CAD model of parts for RP fin mould. 

A rectangle of thin, flexible polypropylene was inserted into the aerofoil-shaped cavities in the 

mould formers, after being curled into approximately the right shape. The cavity was then 

sealed with the end plugs shown in Figure 139. This formed the plastic sheet into the precise 

shape defined in the original CAD designs. The axle was then inserted through a hole in one 

of the end plugs, and the mould rotated so that the axle pointed up. The seam was then 

clamped shut with bulldog clips (also visible in Figure 141), which formed the trailing edge of 

the fin, and then the mould was filled with resin through a hole in the upper mould plug. 

Figure 140 shows a cross-section of the mould on its side, through the fin axle, in the x­y 

plane according to the axes shown in Figure 139. 
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Flexible mould wall Mould former 

End plug 

Moulding cavity 

Fin axle 

100 mm 

Figure 140: Cross­section through the fin mould at the axle, in the x­y plane. 

Figure 141 shows the fin mould ready for use. In the photograph, the mould wall is transpar

ent, and being supported by several vertical struts, added to provide extra stiffness. A funnel 

has been added to the upper end cap, so that resin can be poured in easily, inside a vacuum 

chamber. 

100 mm


Figure 141: Flexible fin mould ready for use. 

The design suffered from a number of problems, each of which had one or more potential 

solutions. They are listed in Table 16: 
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Problem and cause Solution 

Resin leaked from the bottom of the mould 

before it had finished curing, resulting in air 

entering the mould from the top, and the fin 

being shorter than intended. 

The gaps around the base could be painted 

with latex adhesive, which dries to produce an 

airtight seal. The seal is insoluble in water 

and most resins, but can be easily peeled 

away when curing is complete. 

The fin’s section was not constant; its profile 

was wider in the middle than at the top, 

giving it a visible bulge, and significantly 

affecting its stiffness properties. Pressure on 

the mould walls from the weight of the resin 

was causing them to bend outward, and the 

vertical supports intended to prevent this 

were coming unstuck and failing to keep the 

walls straight. 

Better attachment of the axial supports to the 

mould wall would help the situation, as would 

spars around the fin profile in the perpen

dicular direction. A thicker choice of plastic 

sheet for the outer wall would reduce 

deformation, but would also make the low-

radius curve of the fin’s leading edge hard to 

reproduce. 

The trailing edge of the fin was uneven; 

‘crinkling’ of the mould wall near the bulldog 

clips caused distortion of the moulded fin. 

Thicker walls would improve the trailing edge, 

with the same disadvantaged described above. 

The final shape of the fin depended on the 

volume of resin poured into the mould. The 

viscosity of the liquid resin made this difficult 

to control this accurately. 

Improvements to the mould’s stiffness helped 

its ability to hold its shape when overfilled, 

but the solution was never completely 

satisfactory. 

Table 16: Problems with RP fin mould design and their solutions. 

D.3.4 Redesigned RP former mould 

An improved design was created, again using RP components as a former, supporting a 

flexible sheet. This time, spars were added to ensure the mould could not bulge, as had 

happened in the first design. 
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Figure 142: Improved fin mould components. 

The new design (Figure 142) significantly improved the shape of the fins, reducing the 

distortion considerably. The spars kept the fin very close to its intended shape, but smaller, 

separate bulges were still visible between them. A variety of different materials were used to 

form the skin of the mould, but none completely overcame the problem. Materials that were 

stiff enough to reduce the bulging tended to be too stiff to follow the sharp profile at the 

leading edge of the fin. 

D.4 CNC Machined Mould 

Machining a mould from a block of plastic, as shown in Figure 143, was considered as an 

alternative to resin casting. Acrylic was an appropriate choice of mould material as it is stiff, 

inexpensive and easy to machine. 

Figure 143: CNC machined mould. 

The combination of smooth contours and sharp corners needed for a rectangular fin model


mean its shape is not conducive to CNC machining alone. However, the method has been
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used in similar studies (Kemp, et al., 2003), and proved effective. Its advantages and disadvan

tages are shown in Table 17. 

Advantages 

• Fins can be produced in any shape that can be cut by a CNC machine. 

• Resulting fins reproduce CAD data very accurately. 

Disadvantages 

• A new mould is required for each different fin shape. 

• The shape of a fin mould is difficult to produce using a CNC mill. 

Table 17: Advantages and disadvantages of a deformable fin mould. 
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Appendix E : Equipment 

E.1 Rapid Prototyping 

Rapid-prototyped models used in this thesis were built using a Stratasys Dimension BST 

Rapid Prototyping machine (Figure 144). 

Figure 144: Stratasys Dimension BST Rapid Prototyping machine. 

It employs the Fused Deposition Modelling (FDM) method, in which a filament of ABS plastic 

is deposited on the model, building up layers one at a time. 

E.2 CNC Machining 

A Deckel Maho DMU 50 Universal Milling Machine (Figure 145) was used to create the 

moulds for the silicone rubber fins. 

Figure 145: Deckel Maho DMU 50 Universal Milling Machine. 
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E.3 Servomotor 

The specifications of the Hitec RCD HS-5645MG servomotor used to actuate the fin are as 

follows: 

CONTROL SYSTEM 
OPERATING VOLTAGE RANGE 
OPERATING TEMPERATURE RANGE 
TEST VOLTAGE 
OPERATING SPEED 
STALL TORQUE 
OPERATING ANGLE 
DIRECTION 
IDLE CURRENT 
RUNNING CURRENT 
DEAD BAND WIDTH 
CONNECTOR WIRE LENGTH 
DIMENSIONS 
WEIGHT 

:+PULSE WIDTH CONTROL 1500usec NEUTRAL 
:4.8V TO 6.0V 
:­20 TO +60 C 
:AT 4.8V :AT 6.0V 
:0.23sec/60 AT NO LOAD :0.18sec/60 AT NO LOAD 
:10.3kg.cm(143.03oz.in) :12.1kg.cm(168.03oz.in) 
:45 /ONE SIDE PULSE TRAVELING 400usec 
:CLOCK WISE/PULSE TRAVELING 1500 TO 1900usec 
:3mA :3mA 
:350mA :450mA 
:1usec 
:300mm(11.81in) 
:40.6x19.8x37.8mm(1.59x0.77x1.48in) 
:60g(2.11oz) 
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Figure 146: Hitec RCD HS­5645MG servomotor specifications. 

Further information can be found at the manufacturer’s website, www.hitecrcd.com. 
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E.4 Servo Controller 

The specifications of the SSC03A Pololu Micro Serial Servo Controller are shown in Table 18, 

and the board itself is shown in Figure 147. 

PCB size 23 x 23 mm 

Number of servo ports 8 

Pulse width range 0.25 - 2.75 ms 

Resolution 0.5 µs (12-bit) 

Supply voltage 5 – 16 v 

I/O voltage 0 – 5 v 

Baud rate 1200 - 38400 (auto detect) 

Current consumption 5 mA (average) 

Table 18: Pololu Micro Serial Servo Controller specifications. 

Figure 147: Pololu Micro Serial Servo Controller. 

Further information can be found at the manufacturer’s website, www.pololu.com. 
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E.5 Force Sensors 

The specifications of the FSS1500-NSB force sensors are shown in Table 19. 

scitsiretcarahC .niM .pyT .xaM tinU

Table 19: FSS1500­NSB specifications. 

Further information can be found at the supplier’s website, www.sensortechnics.com. 
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Appendix F : Software Packages 

Several software packages were used in the research described in this thesis. They are 

summarised below. 

F.1 Programming Languages 

F.1.1 LabVIEW 

LabVIEW is a graphical programming language useful for its simplicity and compatibility with 

many items of test equipment. Its strength is in creating quick programs to get data from 

hardware without a great deal of prior knowledge. It is well supported with many extensions 

and functions. Information on LabVIEW, its applications, and features, can be found on the 

National Instruments website: www.ni.com/labview. 

F.1.2 PureBasic 

PureBasic is a low-level programming language based on the rules and syntax of the original 

BASIC languages of the 80s, but far exceeding them in versatility. It is a compiled language, 

and can be used to write entire applications in Windows, LINUX, and Mac OS. It is far more 

streamlined and efficient than contemporaries such as Visual Basic, and it is useful for 

creating complex programs, and getting the best performance from hardware. It was used for 

the control of the test rig and data acquisition equipment in this work, as well as for image 

analysis experiments. Further details and specifications can be found on the PureBasic 

website: www.purebasic.com. 

F.1.3 MATLAB 

MATLAB is high-level numerical and graphical computing language. It was used extensively in 

this work for the interpretation, analysis, and visualisation of data. Further information is 

available at: www.mathworks.co.uk. 

F.2 Computer Aided Design Software 

F.2.1 UGS Solid Edge 

UGS Solid Edge was used extensively for the design, drafting of the components of the fin test 

rig, and for modelling the fin designs. A particularly valuable feature is its ability to handle 

parametric designs. These are models where features depend on a set of parameters, such as 
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an aerofoil profile, and if these underlying parameters are changed, the model can update to 

reflect those changes. Further information on Solid Edge can be found at: www.ugs.com. 

F.2.2 Catalyst 

The Stratasys Rapid Prototyping machine (used to generate many of the components used in 

the experimental equipment) is operated by the Catalyst software (Figure 148). It takes the 

models created in Solid Edge and calculates the extrusion paths necessary to build them. 

Figure 148: Catalyst rapid prototyping software. 
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F.2.3 Aerofoil shape generation 

CAD models of aerofoils were produced using an academic computer program from the 

University of Sydney, known simply as ‘naca45.exe’. A picture of the software in use is shown 

in Figure 149. 

Figure 149: NACA Aerofoil generation program. 
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Appendix G : Programs 

The test rig control and data acquisition software contained over 3000 lines of PureBasic 

code. The most fundamental procedures in the code are presented below, as they help to shed 

more light on the experimental process. The code in its entirety can be found on the supple

mental data CD included with this thesis. Likewise, numerous MATLAB routines were used to 

process the data. These programs are also included. 
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G.1 Experiment Setup 

Procedure for setting up a sequence of experiments to be executed by the test rig control 

software: 

Variable Description 

LoAmp, 
AmpStep 

HiAmp, Variables defining the range and step size of amplitudes to be used 
in the experiment set 

LowFreq, 
FreqStep 

HiFreq, Variables defining the range and step size of frequencies to be used 
in the experiment set 

LoAmp.f = 2 : HiAmp.f = 20 : AmpStep.f = 2 
LoFreq.f = 0.5 : HiFreq.f = 5 : FreqStep.f = 0.25 

Waveform = #Sine 
WaveCenter.f = 0.5 
RampCycles.f = 3 
Oscillations.f = 15 
PauseBetween.f = 110 
ZeroTime.f = 10 
SaveFileName.s = "nacasoft" 

TimeTotal = 0 

Amplitude.f = LoAmp 
Repeat 
Frequency.f = LoFreq 
Repeat 

AddElement(CommandList()) 
CommandList()\Command = #CommandPause 
CommandList()\Wait = PauseBetween 
CommandList()\TimeSoFar = TimeTotal 
TimeTotal + (PauseBetween * 1000) 

AddElement(CommandList()) 
CommandList()\Command = #CommandZero 
CommandList()\Wait = ZeroTime 
CommandList()\TimeSoFar = TimeTotal 
TimeTotal + (ZeroTime * 1000) 

AddElement(CommandList()) 
CommandList()\Command = #CommandTest 
CommandList()\SaveFileName = SaveFileName 
CommandList()\Frequency = Frequency 
CommandList()\Amplitude = Amplitude 
CommandList()\Oscillations = Oscillations 
CommandList()\Waveform = Waveform 
CommandList()\WaveCenter = WaveCenter 
CommandList()\RampCycles = RampCycles 
CommandList()\TimeSoFar = TimeTotal 
TimeTotal + ((Oscillations * 1000) / Frequency) 

Frequency + FreqStep 
Until Frequency > HiFreq 
Amplitude + AmpStep 

Until Amplitude > HiAmp 
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G.2 Wave Generation 

Procedure for calculating fin position as a function of time: 

Variable Description 

PhaseFraction Value between 0 and 1 representing the phase angle / 2π 

Cycle Number of cycles completed by the fin 

WaveCenter The asymmetry value, between 0 and 1 

RampCycles Number of cycles in which amplitude is to increase from 0 to its 
final value 

Cycle Number of cycles completed by the fin 

Procedure.f CalcAngle(PhaseFraction.f, Cycle.f) 

Shared WaveCenter.f, RampCycles.f 

; Adjust phase fraction consistent with asymmetry value 
If PhaseFraction < WaveCenter / 2 
AdjustedPhaseFraction.f = PhaseFraction / (WaveCenter / 2) * 0.25 

ElseIf PhaseFraction > 1 ­ (WaveCenter / 2) 
AdjustedPhaseFraction.f = (PhaseFraction ­ (1 ­ (WaveCenter / 2))) / (WaveCenter 

/ 2) * 0.25 + 0.75 
Else 
AdjustedPhaseFraction.f = ((PhaseFraction ­ (WaveCenter / 2)) / (1 ­ WaveCenter) 

* 0.5) + 0.25 
EndIf 

Select ServoWaveform 
Case #Sine 
Position.f = ServoAmplitude * Sin(AdjustedPhaseFraction * 2 * #PI) 

Case #Triangle 
If AdjustedPhaseFraction < 0.25 
Position.f = ServoAmplitude * (AdjustedPhaseFraction * 4) 

ElseIf AdjustedPhaseFraction < 0.75 
Position.f = ServoAmplitude * ((AdjustedPhaseFraction ­ 0.5) * ­4) 

Else 
Position.f = ServoAmplitude * ((AdjustedPhaseFraction ­ 1) * 4) 

EndIf 

Case #Square 
If AdjustedPhaseFraction < 0.25 
Position.f = ServoAmplitude 

ElseIf AdjustedPhaseFraction < 0.75 
Position.f = ­ServoAmplitude 

Else 
Position.f = ServoAmplitude 

EndIf 

EndSelect 

; Ramp amplitude if required 
If Cycle < RampCycles 
RampAmplitude.f = Cycle / RampCycles 

Else 
RampAmplitude = 1 

EndIf 

ProcedureReturn Position * RampAmplitude 

EndProcedure 
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G.3 Data Conversion 

Procedure for calculating forces and torques from raw sensor data: 

Variable Description 

F0, F1, F2 Forces at sensors 

Faz, Fbz, Fby Forces at sensor locations in direction of axes 

Tx, Ty, Tz Torques acting on rig about axes 

Fx, Fy Forces acting on fin, derived from torques 

FinDirection Direction of centre of oscillation in relation to y axis 

For Channel = 0 To nChannels – 1 ; Channel numbers start from 0 
; Retrieve raw reading from memory location 
RawReading(Channel) = PeekW(MemHandle + (BufferPosition * 2) + ((Channel) * 2)) 
; Clean up data and add global offset 
RawReading(Channel) = RawReading(Channel) & 65535 + GlobalOffset 
; Apply scalar and offset to convert raw reading to force 
Reading(Channel) = (RawReading(Channel) ­ ROffset(Channel)) * RScalar(Channel) 

Next 

; Primary measurements: 
F0.f = Reading(0) 
F1.f = Reading(1) 
F2.f = Reading(2) 
RealAngle.f = Reading(3) ­ Angle0 

; Derive component forces: 
Faz.f = F0 
Fbz.f = (F1 + F2) / Sqr(2) 
Fby.f = (F1 ­ F2) / Sqr(2) 

; Calculate torques about pivot 
Tx.f = ((Fbz ­ Faz) * YSensor) ­ Tx0 
Ty.f = ((Faz + Fbz) * XSensor) ­ Ty0 ; Need rig dimensions 
Tz.f = (Fby * XSensor) ­ Tz0 

; Calculate forces at fin 
Fx.f = Ty / ZFin 
Fy.f = Tx / ZFin 

; Calculate thrust, lateral, torque 
Thrust.f = Fx * Cos(FinDirection) ­ Fy * Sin(FinDirection) 
Lateral.f = Fx * Sin(FinDirection) + Fy * Cos(FinDirection) 
Torque.f = ­Tz ­ (Fy * XFin) 

; Work out target position of fin 
Phase = Int(CurrentDataPointTime) % ServoPeriodms 
PhaseFraction.f = Phase / ServoPeriodms 
ServoCycles.f = Int(CurrentDataPointTime) / ServoPeriodms 
ServoTargetAngle.f = CalcAngle(PhaseFraction, ServoCycles) 
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G.4 Post­Experiment Analysis 

Table 20 lists the MATLAB programs that were developed to assist in analysing the data from 

the test equipment. They can be found in the supplementary data CD that accompanies this 

thesis. 

Program Description 

v2_analyse_save Analyse data from a set of tests and save summary to a file 

v2_comparegraph Compare data from two experiment sets 

v2_forcetrace Produce a force trace plot from a single test data file 

v2_globalset Define global variables 

v2_plotgraph3d Plot 3D surface graphs from data summary files 

v2_readfile Read data from a CSV file 

v2_savegraph2d Format, resize, and save 2D graph to a file 

v2_savegraph3d Format, resize, and save 3D graph to a file 

Table 20: Command list parameters 
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Appendix H : Data 

H.1 Example Data File 

The following is an extract from the start of a data file produced by the test rig software. 

Several thousand of these files over the course of this investigation, between them containing 

many millions of data samples. 

Date,15:37:21, 08/10/2008 
FileVersion,5 
SampleRate,1000 
Tx0,0.376911 
Ty0,3.577199 
Tz0,0.001241 
Angle0,3.435227 
XSensor,0.220700 
YSensor,0.068000 
XFin,0.077000 
ZFin,­0.265000 
FinDirection,4.712389 
Waveform,0.000000 
WaveCenter,0.500000 
RampCycles,3.000000 
Experiment,Y 
FinCycles,15.000000 
Frequency,3.750000 
Amplitude,2.000000 

Time,Channel0,Channel1,Channel2,Channel3,F0,F1,F2,Angle,Tx,Ty,Tz,Phase,TargetAngle,Th 
rust,Lateral,Torque 
0.000000,744,911,888,499,5.328091,7.709827,7.690469,0.632570,0.001275,0.002057,0.0017 
80,0.000000,0.000000,­0.004813,0.007764,­0.001410 
1.000000,744,911,888,501,5.328091,7.709827,7.690469,­
0.045397,0.001275,0.002057,0.001780,0.003745,0.000059,­0.004813,0.007764,­0.001410 
2.000000,744,909,888,501,5.328091,7.689528,7.690469,­0.045397,0.000299,­0.001111,­
0.001387,0.007491,0.000235,­0.001130,­0.004191,0.001474 
3.000000,744,911,888,501,5.328091,7.709827,7.690469,­
0.045397,0.001275,0.002057,0.001780,0.011236,0.000528,­0.004813,0.007764,­0.001410 
4.000000,744,909,888,501,5.328091,7.689528,7.690469,­0.045397,0.000299,­0.001111,­
0.001387,0.014981,0.000939,­0.001130,­0.004191,0.001474 
... 

H.2 Example Log File 

The following is an extract from a log file for a series of experiments on the hard compound 

biomimetic fin. 

Filename,biohard 

FileNumber,Frequency,Amplitude,Cycle,TxAvg,TyAvg,TzAvg,TxRMS,TyRMS,TzRMS,OK 
1,0.500000,2.000000,0,0.000065,0.000017,­0.000083,0.002222,0.003156,0.002090,OK 
1,0.500000,2.000000,1,­0.000122,0.000712,0.000030,0.005483,0.008336,0.003493,OK 
1,0.500000,2.000000,2,­0.000407,0.001531,­0.000223,0.005125,0.011794,0.003654,OK 
1,0.500000,2.000000,3,­0.000347,0.000891,­0.000703,0.004831,0.015270,0.004080,OK 
1,0.500000,2.000000,4,­0.000329,0.001871,­0.000035,0.008623,0.016050,0.004606,OK 
1,0.500000,2.000000,5,­0.000317,0.001851,­0.000452,0.005316,0.014430,0.004496,OK 
1,0.500000,2.000000,6,­0.000291,0.001215,­0.000522,0.005918,0.014885,0.004248,OK 
1,0.500000,2.000000,7,­0.000386,0.001826,­0.000230,0.007145,0.015661,0.004832,OK 
1,0.500000,2.000000,8,­0.000347,0.001896,­0.000463,0.004768,0.013834,0.004126,OK 
1,0.500000,2.000000,9,­0.000361,0.001478,­0.000192,0.006502,0.017419,0.004472,OK 
1,0.500000,2.000000,10,­0.000394,0.002147,0.000086,0.009896,0.016161,0.004968,OK 
1,0.500000,2.000000,11,­0.000282,0.002303,­0.000411,0.005096,0.014585,0.003871,OK 
1,0.500000,2.000000,12,­0.000240,0.001353,­0.000521,0.004337,0.015804,0.004177,OK 
... 
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