493 research outputs found

    Intravesical Therapy for Non-Muscle-Invasive Bladder Cancer: What Is the Real Impact of Squamous Cell Carcinoma Variant on Oncological Outcomes?

    Get PDF
    Background and Objectives: To evaluate the oncological impact of squamous cell carcinoma (SCC) variant in patients submitted to intravesical therapy for non-muscle-invasive bladder cancer (NMIBC). Materials and Methods: Between January 2015 and January 2020, patients with conventional urothelial NMIBC (TCC) or urothelial NMIBC with SCC variant (TCC + SCC) and submitted to adjuvant intravesical therapies were collected. Kaplan\u2013Meier analyses targeted disease recurrence and progression. Uni-and multivariable Cox regression analyses were used to test the role of SCC on disease recurrence and/or progression. Results: A total of 32 patients out of 353 had SCC at diagnosis. Recurrence was observed in 42% of TCC and 44% of TCC + SCC patients (p = 0.88), while progression was observed in 12% of both TCC and TCC + SCC patients (p = 0.78). At multivariable Cox regression analyses, the presence of SCC variant was not associated with higher rates of neither recurrence (p = 0.663) nor progression (p = 0.582). Conclusions: We presented data from the largest series on patients with TCC and concomitant SCC histological variant managed with intravesical therapy (BCG or MMC). No significant differences were found in term of recurrence and progression between TCC and TCC + SCC. Despite the limited sample size, this study paves the way for a possible implementation of the use of intravesical BCG and MMC in NMIBC with histological variants

    The role of the multi-disciplinary team and multi-disciplinary therapeutic protocol in the management of the chronic pelvic pain: There is strenght in numbers!

    Get PDF
    Introduction: The aim of the study is to evaluate the effectiveness of a Multi-disciplinary team (MDT) and multi-disciplinary approach in the treatment of Chronic Pelvic Pain (CPP). Methods: The data of all consecutive patients referred for a CPP from 11/2016 to 2/2019 has been prospectively collected. The sample was divided in two groups: Group A, made by patients managed after the institution of our MDT, and Group B, made of patients managed before this date. The MDT is composed by three urogynecologists, a psychologist and a physiotherapist. All Group A patients underwent a weekly bladder instillation with dimethyl sulfoxide (DMSO), kinesiotherapy for trigger points and Percutaneous Tibial Nerve Stimulation for 10 consecutive weeks. Patients were asked to perform a self-treatment following the Stanford Protocol and to adhere to a specific diet. All Group B patients were managed only with DMSO instillations and a strict diet. Results: The Group A was made of 41 females and 6 males while the Group B was made of 38 females and 5 males. The Group A patients showed a statistically significant improvement in the Pelvic Pain Urgency Frequency, in the frequency times reported at the 6 months voiding diary, and a better Patient Global Impression of Improvement. Conclusions: Our data support the efficacy of the MDT in the management of CPP. The multimodal approach might represent an effective and reproducible non-invasive option to manage successfully CPP

    A Cross-Sectional Study of People with Epilepsy and Neurocysticercosis in Tanzania: Clinical Characteristics and Diagnostic Approaches.

    Get PDF
    Neurocysticercosis (NCC) is a major cause of epilepsy in regions where pigs are free-ranging and hygiene is poor. Pork production is expected to increase in the next decade in sub-Saharan Africa, hence NCC will likely become more prevalent. In this study, people with epilepsy (PWE, n=212) were followed up 28.6 months after diagnosis of epilepsy. CT scans were performed, and serum and cerebrospinal fluid (CSF) of selected PWE were analysed. We compared the demographic data, clinical characteristics, and associated risk factors of PWE with and without NCC. PWE with NCC (n=35) were more likely to be older at first seizure (24.3 vs. 16.3 years, p=0.097), consumed more pork (97.1% vs. 73.6%, p=0.001), and were more often a member of the Iraqw tribe (94.3% vs. 67.8%, p=0.005) than PWE without NCC (n=177). PWE and NCC who were compliant with anti-epileptic medications had a significantly higher reduction of seizures (98.6% vs. 89.2%, p=0.046). Other characteristics such as gender, seizure frequency, compliance, past medical history, close contact with pigs, use of latrines and family history of seizures did not differ significantly between the two groups. The number of NCC lesions and active NCC lesions were significantly associated with a positive antibody result. The electroimmunotransfer blot, developed by the Centers for Disease Control and Prevention, was more sensitive than a commercial western blot, especially in PWE and cerebral calcifications. This is the first study to systematically compare the clinical characteristics of PWE due to NCC or other causes and to explore the utility of two different antibody tests for diagnosis of NCC in sub-Saharan Africa

    Genomic Diversity among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium tuberculosis with Identical DNA Fingerprints

    Get PDF
    complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients.We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard genotyping tools if the overall diversity of circulating clones is limited. These findings have important implications for clinical trials of new anti-tuberculosis drugs

    Evidence That Ca2+ within the Microdomain of the L-Type Voltage Gated Ca2+ Channel Activates ERK in MIN6 Cells in Response to Glucagon-Like Peptide-1

    Get PDF
    Glucagon like peptide-1 (GLP-1) is released from intestinal L-cells in response to nutrient ingestion and acts upon pancreatic β-cells potentiating glucose-stimulated insulin secretion and stimulating β-cell proliferation, differentiation, survival and gene transcription. These effects are mediated through the activation of multiple signal transduction pathways including the extracellular regulated kinase (ERK) pathway. We have previously reported that GLP-1 activates ERK through a mechanism dependent upon the influx of extracellular Ca2+ through L-type voltage gated Ca2+ channels (VGCC). However, the mechanism by which L-type VGCCs couple to the ERK signalling pathway in pancreatic β-cells is poorly understood. In this report, we characterise the relationship between L-type VGCC mediated changes in intracellular Ca2+ concentration ([Ca2+]i) and the activation of ERK, and demonstrate that the sustained activation of ERK (up to 30 min) in response to GLP-1 requires the continual activation of the L-type VGCC yet does not require a sustained increase in global [Ca2+]i or Ca2+ efflux from the endoplasmic reticulum. Moreover, sustained elevation of [Ca2+]i induced by ionomycin is insufficient to stimulate the prolonged activation of ERK. Using the cell permeant Ca2+ chelators, EGTA-AM and BAPTA-AM, to determine the spatial dynamics of L-type VGCC-dependent Ca2+ signalling to ERK, we provide evidence that a sustained increase in Ca2+ within the microdomain of the L-type VGCC is sufficient for signalling to ERK and that this plays an important role in GLP-1- stimulated ERK activation

    Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline

    Spontaneous DNA damage to the nuclear genome promotes senescence, T redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline
    • …
    corecore