298 research outputs found

    Flow visualizations of perpendicular blade vortex interactions

    Get PDF
    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect

    Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements

    Full text link
    We develop the analytic and numerical tools for data analysis of the gravitational-wave signals from spinning neutron stars for ground-based laser interferometric detectors. We study in detail the statistical properties of the optimum functional that need to be calculated in order to detect the gravitational-wave signal from a spinning neutron star and estimate its parameters. We derive formulae for false alarm and detection probabilities both for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme. We verify the validity of our concepts and formulae by means of the Monte Carlo simulations. We present algorithms by which one can estimate the parameters of the continuous signals accurately.Comment: LaTeX, 45 pages, 13 figures, submitted to Phys. Rev.

    Nanohertz Frequency Determination for the Gravity Probe B HF SQUID Signal

    Full text link
    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10^10 resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the Gravity Probe B (GP-B) mission. It was applied to the High Frequency (HF) component of GP-B's Superconducting QUantum Interference Device (SQUID) signal, whose main frequency fz is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/sec resolution in its decay rate were achieved out of a succession of 1.86 second-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.Comment: The following article has been submitted to Review of Scientific Instruments. After it is published, it will be found at (http://rsi.aip.org/

    Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.

    Get PDF
    The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    The structure of BVU2987 from Bacteroides vulgatus reveals a superfamily of bacterial periplasmic proteins with possible inhibitory function.

    Get PDF
    Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a β-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to β-lactamase inhibitor protein, PepSY and SmpA_OmlA proteins and hence are likely to function as inhibitory proteins

    Conceptualizing pathways linking women's empowerment and prematurity in developing countries.

    Get PDF
    BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed

    Engineering self-organising helium bubble lattices in tungsten

    Get PDF
    The self-organisation of void and gas bubbles in solids into a superlattices is an intriguing nanoscale phenomenon. Despite the discovery of these lattices 30 years ago, the atomistics behind the ordering mechanisms responsible for the formation of these nanostructures are yet to be fully elucidated. Here we report on the direct observation via transmission electron microscopy of the formation of bubble lattices under He+ ion bombardment. By careful control of the irradiation conditions, it has been possible to engineer the bubble size and spacing of the superlattice leading to important conclusions about the significance of vacancy supply in determining the physical characteristics of the system. Furthermore, no bubble lattice alignment was observed in the directions pointing to a key driving mechanism for the formation of these ordered nanostructures being the two-dimensional diffusion of self-interstitial atoms
    corecore