115 research outputs found

    Lateral impact response of end-plate beam-column connections

    Get PDF
    The behaviour of different steel beam to column connections has been studied intensively against static and seismic loading regimes. However, there is a lack of knowledge on the response of such connections against impact and blast. In order to close this gap, the most common connections with partially depth end plate (PDEPCs), as a simple connection, and flush plate (FPCs), as a moment resisting connection, were investigated under both quasi-static and impact loads. Here, eight specimens were tested under those loading conditions with different locations. 3 D finite element models were then developed and validated against the corresponding experimental results. Full range analyses of the connection responses under both loading regimes are then carried out using the validated FE models to examine the internal forces of the connections. Finally, the results of full analyses under both loading regimes were compared and dynamic increase factors (DIF) were proposed to assist predicting the impact response of these types of connections using the static analysis. The results showed that failure modes under both loading regimes were similar, but with the larger fracture on the PDEPC under quasi-static load than that under lateral impact. The DIFs were found to be between 1.02 and 1.21, 1.03 and 1.36 and 1.22 and 1.45 based on the bolt tensile strength, axial resistance and bending resistance of the connections, respectively. However, if based on the energy approach, the range of DIFs was recorded between 1.25 and 1.38 using the experimental results and between 1.19 and 1.34 using the finite element analysis results

    Bio-inspired polymersome nanoreactors

    Get PDF
    Two key concepts in living organisms are that biochemical reactions are sequestered into reaction compartments such as cells and organelles, and that many of the complex biological reaction cascades involve transient activation of reactions in response to external triggers. Here we review our efforts to implement these concepts into artificial nanoreactors. Block copolymer vesicles (polymersomes) for laccase-catalyzed oxidations as well as a generally applicable permeabilization method for polymersome membranes are highlighted. Moreover, polymersome nanoreactors that can be switched on by visible light and that immediately return to their off state in the dark are reviewed. These systems have the potential to create bio-inspired catalytic systems, e.g. to orchestrate reaction cascades

    Differences in human plasma protein interactions between various polymersomes and stealth liposomes as observed by fluorescence correlation spectroscopy

    Get PDF
    A significant factor hindering the clinical translation of polymersomes as vesicular nanocarriers is the limited availability of comparative studies detailing their interaction with blood plasma proteins compared to liposomes. Here, polymersomes are self-assembled via film rehydration, solvent exchange, and polymerization-induced self-assembly using five different block copolymers. The hydrophilic blocks are composed of anti-fouling polymers, poly(ethylene glycol) (PEG) or poly(2-methyl-2-oxazoline) (PMOXA), and all the data is benchmarked to PEGylated ā€œstealthā€ liposomes. High colloidal stability in human plasma (HP) is confirmed for all but two tested nanovesicles. In situ fluorescence correlation spectroscopy measurements are then performed after incubating unlabeled nanovesicles with fluorescently labeled HP or the specific labeled plasma proteins, human serum albumin, and clusterin (apolipoprotein J). The binding of HP to PMOXA-polymersomes could explain their relatively short circulation times found previously. In contrast, PEGylated liposomes also interact with HP but accumulate high levels of clusterin, providing them with their known prolonged circulation time. The absence of significant protein binding for most PEG-polymersomes indicates mechanistic differences in protein interactions and associated downstream effects, such as cell uptake and circulation time, compared to PEGylated liposomes. These are key observations for bringing polymersomes closer to clinical translation and highlighting the importance of such comparative studies

    The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash

    Get PDF
    This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere

    An efficient chameleon swarm algorithm for economic load dispatch problem

    Get PDF
    Economic Load Dispatch (ELD) is a complicated and demanding problem for power engineers. ELD relates to the minimization of the economic cost of production, thereby allocating the produced power by each unit in the most possible economic manner. In recent years, emphasis has been laid on minimization of emissions, in addition to cost, resulting in the Combined Economic and Emission Dispatch (CEED) problem. The solutions of the ELD and CEED problems are mostly dominated by metaheuristics. The performance of the Chameleon Swarm Algorithm (CSA) for solving the ELD problem was tested in this work. CSA mimics the hunting and food searching mechanism of chameleons. This algorithm takes into account the dynamics of food hunting of the chameleon on trees, deserts, and near swamps. The performance of the aforementioned algorithm was compared with a number of advanced algorithms in solving the ELD and CEED problems, such as Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm Algorithm (EWA). The simulated results established the efficacy of the proposed CSA algorithm. The power mismatch factor is the main item in ELD problems. The best value of this factor must tend to nearly zero. The CSA algorithm achieves the best power mismatch values of 3.16Ɨ10āˆ’13, 4.16Ɨ10āˆ’12 and 1.28Ɨ10āˆ’12 for demand loads of 700, 1000, and 1200 MW, respectively, of the ELD problem. The CSA algorithm achieves the best power mismatch values of 6.41Ɨ10āˆ’13Ā , 8.92Ɨ10āˆ’13Ā andĀ 1.68Ɨ10āˆ’12 for demand loads of 700, 1000, and 1200 MW, respectively, of the CEED problem. Thus, the CSA algorithm was found to be superior to the algorithms compared in this work

    Flexural behaviour of reinforced concrete beams with horizontal construction joints

    Get PDF
    In the present research, ten simply supported reinforced concrete beams having a rectangular cross-section were cast and tested up to failure under the action of two-point loads. Eight of these beams were designed to contain horizontal construction joints (HCJs) of different number and location in the beam while the other two beams had no construction joint which were referred to as reference beams for the sake of comparison of results. All the tested beams had been designed to fail in flexure and had the same amount and type of longitudinal and transverse reinforcement as well as similar concrete properties. The results of this series of tests have indicated that the presence of HCJs in reinforced concrete beams leads to a decrease in its ultimate loads and increase in its ultimate deflection. The values of the recorded ultimate loads ranged between 83% to 98% times that of the reference beam while the ultimate deflection ranged between 102% to 133% times that of the reference beam

    Shear performance of beam-column joints subjected to high loading rates

    Get PDF
    High loading rates may produce in structural frames due to some actions, such as explosions or debris impact. The response of structural members to such abnormal loadings should be investigated to provide comprehensive knowledge of their capability to resist impulsive forces. The beam-column joint is considered one of the most important structural components that significantly control the robustness and integrity of a structural frame. Hence, in the current study, eight full-scale specimens of two types of beam-column joints were tested under dynamic impact load to study their response to high rate load. These two types of joints were fin-plate and single angle-cleat joints. The tests were carried out using a drop hammer to apply an impact load on the specimens from different heights with different preloading conditions. The single angle-cleat joints exhibited a better response to dynamic loads with different impact height and preloading conditions than fin-plate joints in terms of resistance and ductility. Bolt shear failure was the dominant failure mode of the two types of the joints selected

    Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damage

    Get PDF
    Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components

    Creativity and Autonomy in Swarm Intelligence Systems

    Get PDF
    This work introduces two swarm intelligence algorithms -- one mimicking the behaviour of one species of ants (\emph{Leptothorax acervorum}) foraging (a `Stochastic Diffusion Search', SDS) and the other algorithm mimicking the behaviour of birds flocking (a `Particle Swarm Optimiser', PSO) -- and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploliting an artistic tension between the local behaviour of the `birds flocking' - as they seek to follow the input sketch - and the global behaviour of the `ants foraging' - as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putative `creativity' of this hybrid swarm system in the philosophical light of the `rhizome' and Deleuze's well known `Orchid and Wasp' metaphor

    Behaviour of moment resisting reinforced concrete frames subjected to column removal scenario

    Get PDF
    Researchers awarded a considerable attention to progressive collapse analysis in recent years to avoid the partial or entire failure of structures. General Service Administration guidelines (GSA) established the base to deal with such catastrophic failure. For multi-story building, these guidelines proposed column removal scenario in which one or more columns in different locations should be removed from a structure. Then, the response of entire structure with the column omitted should sustain the loading applied ensuring no global failure occurred. In this paper, three-dimensional reinforced concrete (RC) frame is constructed and analyzed using the commercial program SAP2000. Non-linear static analysis is employed to obtain Demand Capacity Ratios (DCR) for beams and the displacement of joint connecting beams to column in the selected frame. The response of moment resisting RC frame under column removal scenario is presented and discussed in terms of strength and displacements in critical locations in RC frame to evaluate the strength of such frame against progressive collapse
    • ā€¦
    corecore