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Abstract: Economic Load Dispatch (ELD) is a complicated and demanding problem for power
engineers. ELD relates to the minimization of the economic cost of production, thereby allocating
the produced power by each unit in the most possible economic manner. In recent years, emphasis
has been laid on minimization of emissions, in addition to cost, resulting in the Combined Economic
and Emission Dispatch (CEED) problem. The solutions of the ELD and CEED problems are mostly
dominated by metaheuristics. The performance of the Chameleon Swarm Algorithm (CSA) for
solving the ELD problem was tested in this work. CSA mimics the hunting and food searching
mechanism of chameleons. This algorithm takes into account the dynamics of food hunting of the
chameleon on trees, deserts, and near swamps. The performance of the aforementioned algorithm
was compared with a number of advanced algorithms in solving the ELD and CEED problems,
such as Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm Algorithm
(EWA). The simulated results established the efficacy of the proposed CSA algorithm. The power
mismatch factor is the main item in ELD problems. The best value of this factor must tend to nearly
zero. The CSA algorithm achieves the best power mismatch values of 3.16 × 10−13, 4.16 × 10−12 and
1.28× 10−12 for demand loads of 700, 1000, and 1200 MW, respectively, of the ELD problem. The CSA
algorithm achieves the best power mismatch values of 6.41 × 10−13 , 8.92 × 10−13 and 1.68 × 10−12

for demand loads of 700, 1000, and 1200 MW, respectively, of the CEED problem. Thus, the CSA
algorithm was found to be superior to the algorithms compared in this work.

Keywords: chameleon swarm algorithm; optimization; economic load dispatch; combined emission;
economic dispatch

1. Introduction

The problem of economically allocating the power production of each generating unit
and minimizing the emissions of these units is an ongoing challenge for engineers. This has
led to the development of the Economic Load Dispatch (ELD) and Combined Economic and
Emission Dispatch (CEED) problems. ELD and CEED are among the most complex power
system optimization problems. The solution methodology of these complex problems
is mostly dependent on metaheuristics [1]. In [2], Gradient-Based Optimizer (GBO) was
used for solving ELD, with and without the valve point effect, in addition to CEED. In [3],
the authors used a modified version of the Class Topper Optimizer (CTO) algorithm for
solving different variants of ELD. In [4], the Turbulent Flow of Water Optimization (TFWO)
algorithm was used for solving ELD and CEED. In [5], a hybrid algorithm comprising
the Firefly Algorithm (FA) and Bat Algorithm (BA) was used for solving variants of the
ELD problem. Simulation results showed that the hybrid algorithm performed better than
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the standalone algorithms. However, the computational cost of the hybrid algorithm is
greater than that of the standalone algorithms. In [6], a memory-based Gravitational Search
Algorithm (GSA) was used for solving the ELD problem in a micro-grid environment
having renewable generation. In [7], authors used Moth Flame Optimization (MFO) for
solving the ELD problem considering the valve point effect, wind power, and the load
transit conditions. In [8], a novel algorithm considering amalgamation of quantum theory,
the Gravitational Search Algorithm (GSA), and Particle Swarm Optimization (PSO) was
used for solving the ELD of a power system having photovoltaic generation. When
integrated into the algorithm, the quantum theory concepts enhanced the capability. This
is due to the fact that, in quantum space, the movement of particles is not restricted and the
optimal solution can be found with an even smaller population. In [9], authors proposed the
Firefly Algorithm (FA) with a non-homogeneous population for solving different variants
of the ELD problem. In [10], the authors proposed an improved version of the Firefly
Algorithm (FA) for solving the reserve constrained dynamic ELD problem in multi-area
power systems. In [11], a quantum-inspired Bat Algorithm (BA) was used for solving the
ELD problem with the valve point effect. In [12], the authors used a Pareto-based PSO for
solving CEED. In [13], the authors modelled the ELD problem in the presence of Electric
Vehicles (EVs) as a storage medium and solved the problem by reinforcement learning.
In [14], authors proposed a novel island-based Harmony Search (HS) algorithm for solving
the non-convex ELD problem. In [15], authors proposed an improved directional Bat
Algorithm (BA) for solving different variants of the ELD problem. In [16], authors used a
modified version of the Krill Herd (MKH) algorithm for solving an ELD problem including
nonlinear characteristics of generators. It was observed that the MKH performed relatively
well compared to other metaheuristics and that tuning of parameters was also very easy
in MKH. In [17], an improved version of symbiosis PSO was proposed for solving the
ELD problem. In [18], the authors proposed an improved version of Teaching Learning
Based Optimization (TLBO) for solving dynamic ELD considering wind resources and
load demand uncertainty. In [19], the authors proposed an evolutionary adaptive Hooke
Jeeves algorithm for solving ELD considering the valve point effect. A hybrid algorithm
considering amalgamation of PSO with DE was proposed for solving ELD with and without
the valve point effect in [20]. In [21], authors applied Ant Colony Optimization (ACO) for
solving ELD in the case of an IEEE 26 bus test system considering the valve point effect.
In [22], authors applied oscillatory PSO for solving ELD with multiple fuel options. A
hybrid GA and fish swarm algorithm was used for solving ELD with multiple fuel and
valve point effects in [23]. It was observed that the hybrid algorithm performed better than
the standalone algorithms when applied to the ELD problem.

From references [2–23], it can be concluded that researchers have used a number of
metaheuristics, such as BA, FA, PSO, CTO, GSA, and MFO, for solving the complex and
demanding problem of ELD. Regardless of the application of various metaheuristics for
addressing the ELD problem, researchers continue to seek and develop new and novel
methods for its solution. The superb inspiration driving this is the No Free Lunch (NFL)
hypothesis [24–28]. The NFL hypothesis expresses that a single algorithm does not perform
equally well when applied to all enhancement issues. Henceforth, it is a legitimate goal
to propose new, more proficient methods and improve the existing techniques. Thus, the
current study proposes a novel Chameleon Swarm Algorithm (CSA) for solving the ELD
problem. CSA is a novel algorithm proposed by Braik in 2021 that mimics the hunting and
food searching mechanism of chameleons [29].

The main items of this work are as follows:

� Discussion of the problems of economic load dispatch (ELD) and the combined
emission and economic dispatch (CEED) for a six-unit network system.

� The Chameleon Swarm Algorithm (CSA) is used as a new metaheuristic technique
for the two case studies.

� Minimizing the fuel cost is the main item in the objective function in the ELD problem.
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� Minimizing the fuel cost and emission cost are the main items in the objective function
in the CEED problem.

� A comparison between the proposed CSA method and other algorithms, such as
the Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm
Algorithm (EWA), is undertaken for the two case studies.

� The performance of all algorithms is measured according to the power mismatch
factor in the ELD and CEED problems.

� The maximum, mean, minimum, and standard deviation values of 30 independent
runs were examined as statistical analyses for all applied algorithms.

The paper is organized as follows: the ELD and CEED problems are analyzed in
Section 2. Section 3 discusses the chameleon swarm algorithm. The numerical analysis
of the results is discussed in Section 4. Section 5 presents the conclusion and discusses
future work.

2. Economic Load Dispatch Problem

Power system operation is subject to a number of problems; one of these is the ELD
problem. Minimizing fuel consumption cost is the main issue in the optimization of the
ELD problem to maximize the benefit economic of the power system. The main variable in
the ELD problem is the allocating vector of each unit that specifies the optimal production
for each unit in the system. Section 2.1 discusses ELD with losses and Section 2.2 discusses
combined economic and emission dispatch (CEED).

2.1. ELD

The mathematical modeling of ELD with losses is clarified in this section. The operat-
ing cost of fuel consumption of n generators is:

Min(F) = F1(P1) + · · · Fn(Pn) (1)

where F is the total fuel cost, F1 is the cost of fuel for the 1st generator, and Fn is the cost of
fuel for the nth generator. The fuel consumption cost function is estimated in quadratic
form as:

Min(F) =
n

∑
k=1

Fi(Pi) =
n

∑
k=1

akP2
k + bkPk + ck (2)

where c, b, a are the fuel cost weight constants.
The generator constraints of each unit are given by Equations (3) and (5):

n

∑
k=1

Pk − PD − PL = 0 (3)

where PD signifies total network demand and PL represents the network transmission losses.

PL =
n

∑
i=1

n

∑
j=1

PiBijPj (4)

where Bij is the loss factor, Pi is the power generated by the ith generator, and Pj is the
power generated by the jth generator.

Pmin
k ≤ Pk ≤ Pmax

k (5)

2.2. CEED

The ELD problem is further developed by taking the reduction of emissions into
consideration with the production cost; this is then called the CEED problem. Minimizing
fuel cost is aligned with minimizing the emissions. Similarly, minimizing the emissions is
aligned with minimizing the fuel cost.



Mathematics 2021, 9, 2770 4 of 14

The CEED problem is concerned with the minimization of the gases from power
plants. The factor of emission is specified by:

Min(E) =
n

∑
k=1

Ei(Pi) =
n

∑
k=1

αkP2
k + βkPk (6)

The CEED problem fitness function is:

objective f unction = Min

(
n

∑
k=1

Ei(Pi) + he

n

∑
k=1

Fi(Pi)

)
(7)

where he is the penalty factor of price, as shown in Equation (8):

he =
Fi(Pimax)

Ei(Pimax)
(8)

The generator constraints of each unit are given by Equations (3) and (5).

3. Chameleon Swarm Algorithm (CSA)

CSA is one of the most recent metaheuristics and was proposed by Braik in 2021.
This algorithm mimics the hunting and food searching mechanism of chameleons [29].
Chameleons are a highly specialized class of species, having the ability to change color
to mix in with their surrounding environment [29]. Chameleons have the capacity to live
and survive in lowlands, mountains, deserts, and semi-desert areas, and generally eat
insects [29]. Their food hunting process involves a number of steps, such as tracking the
prey, pursuing the prey using their sight, and attacking the prey, as shown in Figure 1.
The mathematical models and steps of this algorithm are explained in the subsequent
sub-sections.
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Figure 1. Steps of CSA.

3.1. Initialization and Function Evaluation

CSA is a population-based metaheuristic that randomly generates an initial population
to start the process of optimization. The chameleon population with size n is generated in
a d dimensional search area, where each individual of the population is a possible solution
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to the optimization problem. The chameleon position at any iteration in the search area is
characterized by Equation (9):

yi
t =

[
yi

t,1, yi
t,2, . . . .yi

t,d

]
(9)

where i = 1,2 . . . t represents the count of iteration, yi
t,d represents the position of chameleon.

The initial population is generated based on the problem dimension and the number
of chameleons in the search space as shown in Equation (10):

yi = lj + r
(
uj − lj

)
(10)

where yi is the initial vector of the ith chameleon, uj and lj refer to the upper and lower
limits of the search space, respectively, and r is a random uniformly number ranging from
0 to 1. The solution quality in each step is measured for each new position on the basis of
the evaluation of the objective function.

3.2. Search of Prey

The chameleons’ movement behavior during searching can be characterized based on
the updating strategy of position, as in Equation (11):

yi,j
t+1 =

{
yi,j

t + P1

(
Pi,j

t − Gj
t

)
r2 + P2

(
Gj

t − yi,j
t

)
r1

yi,j
t + µ

(
uj − l j)r3 + l j

bsgn(rand − 0.5) r1 < Pp
r1 ≥ Pp (11)

where t and (t + 1) indicate the tth and (t + 1)th iteration step, respectively. i and j represent
the ith chameleon in the jth dimension. yi,j

t and yi,j
t+1 are the current and new positions,

respectively, of the chameleon. Pi,j
t and Gj

t imply the best and global best positions of the
chameleon, respectively.

Where, P1 and P2 are two positive numbers that control exploration ability. r1, r2,
and r3 are random uniformly numbers created and ranging from 0 to 1. ri is a random
uniformly number created at index i ranging from 0 to 1. Pp indicates the probability of the
chameleon perceiving prey. sgn(rand − 0.5) has an effect on the direction of exploitation
and exploration, and can be either −1 or 1. µ is a function of iterations parameter that
reduces with the number of iterations.

3.3. Chameleon’s Eyes Rotation

Chameleons possess the capacity to identify the position of the prey by rotating their
eyes. This rotational feature assists them to spot the prey through 360 degrees [21]. The
accompanying steps happen in the following manner:

• The first position of the chameleon is the focal point of gravity (i.e., the beginning);
• The rotation matrix is discovered that recognizes the position of the prey;
• The situation of the chameleon is refreshed utilizing the rotation matrix at the focal

point of gravity;
• Finally, the chameleons are returned to the first position

3.4. Hunting Prey

Chameleons assault their prey when it comes excessively close. The chameleon that
is nearest to the prey is the optimal chameleon, and is viewed as the best result. This
chameleon assaults the prey by utilizing its tongue. The situation of the chameleon is
improved because it can extend its tongue by twice its length. This helps the chameleon to
take advantage of the pursuit space, and allows it to adequately snatch prey [21]. The speed
of a chameleon’s tongue when it is extended toward prey can be numerically demonstrated
by Equation (12):

vi,j
t+1 = wvi,j

t + c1

(
Gj

t − yi,j
t

)
+ c2

(
Pi,j

t − yi,j
t

)
r2 (12)



Mathematics 2021, 9, 2770 6 of 14

where vi,j
t+1 indicates the new velocity of the ith chameleon in the jth dimension of iteration

t +1, and vi,j
t indicates the current velocity of the ith chameleon in the jth dimension.

4. Numerical Analysis of Results

The performance of CSA for two scenarios of ELD was examined. The proposed CSA
algorithm was compared with Grey Wolf Optimization (GWO), Sine Cosine Algorithm
(SCA), and Earth Worm Algorithm (EWA) for the same two case studies. Table 1 describes
the two case studies used to compare the proposed CSA with the other algorithms. The
general and private settings for all algorithms are reported in Table 2. The independent
runs were performed on MATLAB R2015b software and Intel(R) Core(TM) i7-4600U CPU
@ 2.10 GHz–2.70 GHz hardware with Windows User 10 Pro and 8 GB RAM.

Table 1. Cases of the tested networks.

Item Problem Test Network Load (MW)

1 ELD 6

1200

1000

700

2 CEED 6

1200

1000

700

Table 2. Algorithms’ specific parameter settings.

Algorithms Parameter Values

Common parameters Size of population: N = 30
Number of iterations is 1000

CSA p1, p2, ρ, c1, c2 are equal to 0.25, 1.50, 1.0 1.75, 1.75, respectively.

GWO a decreases linearly from 2 to 0

SCA A = 2

EWA A = 0.98, β0 = 1, and γ = 0.9

4.1. Results of the ELD Problem

The network system of six generator units with several demand loads, as shown in
Table 1, was used to solve the ELD problem based on several optimization algorithms,
namely, the CSA, SCA, GWO, and EWA algorithms. The comparison between all algorithms
was performed based on 30 independent runs. Table 3 presents the statistical analysis,
showing the standard deviation, minimum, mean, and maximum of the objective function
for all algorithms based on the 30 independent runs for all demand loads. Based on this
table, the proposed CSA algorithm achieved the best objective function and standard
deviation for all cases. Thus, CSA is more reliable and has higher accuracy than the other
competitor algorithms. The best fuel consumption cost for all demand loads and the best
objective function for all algorithms is reported in Table 4. The allocation vector of each
unit in the network system based on the best fitness function is reported in Tables 5–7, for
demand loads of 700, 1000, and 1200 MW, respectively. Based on these results, the proposed
CSA algorithm achieved the best fuel consumption cost for all demand cases. The order
of algorithms based on the best cost is CSA, GWO, SCA, and EWA for all demand cases.
The convergence and robustness curves for all algorithms over 30 independent runs are
shown in Figures 2–4, for demand levels of 700, 1000, and 1200 MW, respectively. Based on
these figures, the CSA reached the optimal solution faster than the other algorithms. The
convergence and robustness curves indicate the solution achieved by the proposed CSA
algorithm was the global optimal solution for ELD problem.
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Table 3. Statistical analysis of objective function for case 1.

Load
(MW) Technique Min Mean Max SD

700

CSA 8528.091975 8922.841673 9093.525189 133.4072202

GWO 554,192.147 8,523,819.629 29,793,196.04 7,437,182.379

SCA 7,680,621.197 69,654,953.61 203,722,478.8 42,769,492.03

EWA 14,863.57446 46,501,446.523 196,465,481.6 57,752,646.53

1000

CSA 12,120.08172 12,311.32929 12,695.87285 115.7916315

GWO 495,091.3593 12,418,496.27 39,059,487.38 9,946,760.603

SCA 1,836,263.786 126,730,461.9 620,534,587.7 122,987,260.2

EWA 44,518.42105 25,701,303.152 156,109,230.1 37,277,321.51

1200

CSA 14,846.46878 14,964.33727 16,640.51747 319.5243805

GWO 3,089,864.26 15,978,305.46 119,976,210.6 21,625,976.95

SCA 15,376,807.46 199,191,415.2 608,076,225.3 157,173,566.8

EWA 14,915.7328 71,604,765.525 564,214,908.2 121,880,902.4

Table 4. Best fuel cost in $ per hour for various load settings of case 1.

Technique 700 MW 1000 MW 1200 MW

CSA 8528.091869 12,120.04448 14,846.46878

GWO 8602.008494 12,363.08738 14,865.77008

SCA 8717.700902 12,370.84528 14,962.38136

EWA 9540.807338 14,612.63001 17,447.40468

Table 5. Vector of allocation for the best objective function for all techniques of case 1 at demand of
700 MW.

CSA GWO SCA EWA

201.2535201 165.20543 163.4754609 57.01527783

129.4000937 126.7615129 94.97953739 75.0047139

154.2857039 200.0201434 151.0967108 91.00020071

71.30891756 69.4678662 150 116.0167198

98.34085361 101.459958 84.37601099 124.0000002

57.66734009 50 69.14598368 248.4968272

Table 6. Vector of allocation for the best objective function for all techniques of case 1 at demand of
1000 MW.

CSA GWO SCA EWA

403.4372818 500 273.3437231 56.00029022

142.9644621 151.23974 112.4433126 84.00042386

244.1627946 80.9641118 300 102.0006046

66.55584622 97.7893247 79.70060918 143.6741356

116.3668887 139.896394 141.6622318 149.0010695

50.00013166 52.367134 120 486.9954158
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Table 7. Vector of allocation for the best objective function for all techniques of case 1 at demand of
1200 MW.

CSA GWO SCA EWA

467.1166529 456.069504 500 51.02070233

192.0406171 160.473756 169.2380267 105.9965483

231.0401614 264.875181 300 132.0054405

126.9090868 138.920676 139.6603993 180.963024

147.2057156 109.351234 50 276.8977415

69.81050052 104.7556989 74.15460988 486.8740064
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4.2. Results of CEED Problem

The network system of six generator units with several demand loads, as shown in
Table 1, was used to solve the CEED problem based on several optimization algorithms,
namely, the CSA, SCA, GWO, and EWA algorithms. The comparison between all algorithms
was performed based on 30 independent runs. Table 8 presents the statistical analysis and
shows the standard deviation, minimum, mean and maximum of the objective function for
all algorithms based on the 30 independent runs for all demand loads. Based on this table,
the proposed CSA algorithm achieved the best objective function and standard deviation
for all cases. Thus, CSA is more reliable and has higher accuracy than the other competitor
algorithms. The best fuel consumption cost for all demand loads and the best objective
function for all algorithms is reported in Table 9. The allocation vector of each unit in the
network system based on the best fitness function is reported in Tables 10–12, for demand
levels of 700, 1000, and 1200 MW, respectively. Based on these results, the proposed CSA
algorithm achieved the best fuel consumption cost for all demand cases. The order of
algorithms based on the best cost is CSA, GWO, SCA, and EWA for all demand cases.
The convergence and robustness curves for all algorithms over 30 independent runs are
explained in Figures 5–7, for demand levels of 700, 1000, and 1200 MW, respectively. Based
on these figures, the CSA reached the optimal solution faster than the other algorithms.
The convergence and robustness curves indicate the solution achieved by the proposed
CSA algorithm is the global optimal solution for the CEED problem.
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Table 8. Statistical analysis of the objective function for case 2.

Load (MW) Technique Min Mean Max SD

700

CSA 13,740.19426 15,341.954 16,374.91585 673.5762317

GWO 99,263.42118 8,823,549.782 32,618,509.3 8,180,728.243

SCA 1,299,372.036 58,806,922.34 268,245,016.9 70,125,512.69

EWA 94,898.9244 36,933,381.1603 132,342,809.9 34,411,120.3

1000

CSA 21,612.42374 22,386.89567 23,771.54396 526.6885085

GWO 491,868.4754 10,247,754.87 43,428,023.49 9,546,163.002

SCA 12,621,456.9 87,188,746.09 305,519,608.7 64,964,750.28

EWA 70,176.0552 12,601,434.865 46,743,568.71 14,550,469.21

1200

CSA 27,972.52315 28,378.16957 30,238.11598 430.7763349

GWO 3,103,205.769 15,991,735.76 119,989,397.5 21,625,919.36

SCA 15,390,677.52 199,205,138 608,090,433.9 157,173,553.9

EWA 33,465.88848 78,645,451.7863 448,031,794.3 113,944,006.1

Table 9. Best fuel and emission costs in $ per hour for various load settings of case 2.

Technique
700 MW 1000 MW 1200 MW

Fuel Emission Fuel Emission Fuel Emission

CSA 8462.268917 6792.11394 12,139.60382 10,527.9799 14,856.97546 15,211.91134

GWO 8907.148297 12,152.50578 12,260.97086 8748.43968 14,865.77008 16,562.15696

SCA 9066.659657 4136.630696 12,237.98949 9363.736686 14,962.38136 18,113.98812

EWA 9368.5485 10,248.42837 13,633.57578 22,746.5453 16,837.91299 42,558.60192

Table 10. Vector of allocation for the best objective function for all techniques of case 2 at demand of
700 MW.

CSA GWO SCA EWA

258.0083211 115.216131 117.2751813 53

50.00000869 75.731398 200 84

167.3337086 300 80 109

106.613021 103.905314 50 135

73.44096019 67.6531736 200 158

56.5684972 52.354702 67.13006412 175

Table 11. Vector of allocation for the best objective function for all techniques of case 2 at demand of
1000 MW.

CSA GWO SCA EWA

400.4399359 376.513695 394.8204572 78.0000557

140.5499372 200 157.0376964 94.17467563

195.0348613 137.696695 131.0117043 133.9999977

119.3390882 74.5127265 140.4159948 164.4652813

98.24778751 135.028378 119.2275839 265.4122572

69.56091425 100.274265 81.11261153 290.2872253
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Table 12. Vector of allocation for the best objective function for all techniques of case 2 at demand of
1200 MW.

CSA GWO SCA EWA

480.1323819 456.069504 500 87.99845176

171.3582298 160.473756 169.2380267 138.4838263

266.9421588 264.875181 300 154.9963726

78.28987273 138.920676 139.6603993 170.9819546

152.5502456 109.351234 50 249.9359313

85.07538079 104.7556989 74.15460988 432.8298403
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4.3. Discussion of Results

The power mismatch factor is the main factor in the ELD problems. This can be
expressed by the absolute error between two terms; the first term is the sum of transmission
losses and the load demand, and the second term is the sum of power generated by each
unit in the system. The best value of this factor must tend to nearly zero. Based on the data
identified from all algorithms, the power mismatch factor was calculated. The value of this
factor is illustrated in Table 13 for the two cases used in this work. Based on this recorded
data, the CSA technique achieved the best power mismatch factor compared to the GWO,
SCA, and EWA algorithms.

Table 13. The power mismatch value for all cases.

Cases Algorithm 700 MW 1000 MW 1200 MW

Case 1

CSA 3.16 × 10−13 4.16 × 10−12 1.28 × 10−12

GWO 5.46 × 10−5 4.83 × 10−5 3.07 × 10−4

SCA 0.00076719 1.82 × 10−4 1.54 × 10−3

EWA 5.71 20.1 23.4

Case 2

CSA 6.41 × 10−13 8.92 × 10−13 1.68 × 10−12

GWO 8.38 × 10−6 4.7 × 10−5 3.07 × 10−4

SCA 0.000128351 0.001259941 0.001536185

EWA 2.164245 9.051048781 17.36856684

5. Conclusions

ELD is a complicated problem in the optimization of power systems. This work
validates the performance of the Chameleon Swarm Algorithm (CSA) in solving different
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cases of ELD. CSA is one of the most recently developed metaheuristics, and mimics the
food hunting process of chameleons. CSA has an excellent balance between exploration
and exploitation, and favors faster convergence. In the current study, the performance of
CSA was compared with that of several metaheuristic algorithms, namely, GWO, SCA, and
EWA, in solving CEED and ELD for a six unit system. It was found that CSA performed
well compared to other state-of-the-art metaheuristics and favored a faster convergence.
The proposed CSA algorithm achieved the best objective function and standard deviation
for all cases of CEED and ELD for a six unit system. Thus, CSA is more reliable and has
higher accuracy than the other competitor algorithms. The CSA technique achieved the
best power mismatch factor in solving CEED and ELD for a six unit system compared to
the GWO, SCA, and EWA algorithms.

Future research will focus on the following aspects:

• Improvement and hybridization of CSA;
• Using CSA for solving other complex power system optimization problems; for

example, unit commitment and hydro-thermal scheduling.
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