111 research outputs found

    Constraints on Galileon-induced precessions from solar system orbital motions

    Full text link
    We use latest data from solar system planetary orbital motions to put constraints on some Galileon-induced precessional effects. Due to the Vainshtein mechanism, the Galileon-type spherically symmetric field of a monopole induces a small, screened correction proprtional to \sqrt{r} to its usual r^-1 Newtonian potential which causes a secular precession of the pericenter of a test particle. In the case of our solar system, latest data from Mars allow to constrain the magnitude of such an interaction down to \alpha <= 0.3 level. Another Galileon-type effect which might impact solar system dynamics is due to an unscreened constant gradient induced by the peculiar motion of the Galaxy. The magnitude of such an effect, depending on the different gravitational binding energies of the Sun and the planets, is \xi <= 0.004 from the latest bounds on the supplementary perihelion precession of Saturn.Comment: LaTex2e, 11 pages, 1 table, no figures, 35 references. To appear in Journal of Cosmology and Astroparticle Physics (JCAP

    Phenomenology of Λ\Lambda-CDM model: a possibility of accelerating Universe with positive pressure

    Full text link
    Among various phenomenological Λ\Lambda models, a time-dependent model Λ˙H3\dot \Lambda\sim H^3 is selected here to investigate the Λ\Lambda-CDM cosmology. Using this model the expressions for the time-dependent equation of state parameter ω\omega and other physical parameters are derived. It is shown that in H3H^3 model accelerated expansion of the Universe takes place at negative energy density, but with a positive pressure. It has also been possible to obtain the change of sign of the deceleration parameter qq during cosmic evolution.Comment: 16 Latex pages, 11 figures, Considerable modifications in the text; Accepted in IJT

    Cosmological parameters from large scale structure - geometric versus shape information

    Full text link
    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\nu presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal LambdaCDM+m_\nu. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck surveyor become available. In the course of our analysis, we introduce a new dewiggling procedure that allows us to extend consistently the use of the SDSS HPS to models with an arbitrary sound horizon at decoupling. All the cases considered here are compatible with the conservative 95%-bounds \sum m_\nu < 1.16 eV, N_eff = 4.8 \pm 2.0.Comment: 18 pages, 4 figures; v2: references added, matches published versio

    Holographic Dark Energy Model and Scalar-Tensor Theories

    Full text link
    We study the holographic dark energy model in a generalized scalar tensor theory. In a universe filled with cold dark matter and dark energy, the effect of potential of the scalar field is investigated in the equation of state parameter. We show that for a various types of potentials, the equation of state parameter is negative and transition from deceleration to acceleration expansion of the universe is possible.Comment: 11 pages, no figure. To appear in General Relativity and Gravitatio

    Gauge Formulation for Higher Order Gravity

    Get PDF
    This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained which includes derivatives of the curvature. We analyze the form of the second field strenght, G=F+fAFG=\partial F +fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of FF and quadratic contractions of GG are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his Generalized Electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behaviour at short distances as well as a meso-large distance modification.Comment: Published versio

    Interaction of Hawking radiation with static sources in deSitter and Schwarzschild-deSitter spacetimes

    Full text link
    We study and look for similarities between the response rates RdS(a0,Λ)R^{\rm dS}(a_0, \Lambda) and RSdS(a0,Λ,M)R^{\rm SdS}(a_0, \Lambda, M) of a static scalar source with constant proper acceleration a0a_0 interacting with a massless, conformally coupled Klein-Gordon field in (i) deSitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the deSitter cosmological horizon, and in (ii) Schwarzschild-deSitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Λ\Lambda is the cosmological constant and MM is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of deSitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-deSitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that RdS(a0,Λ)R^{\rm dS}(a_0, \Lambda) and RSdS(a0,Λ,M)R^{\rm SdS}(a_0, \Lambda, M) do not coincide in general, but tend to each other when Λ0\Lambda \to 0 or a0a_0 \to \infty. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.Comment: ReVTeX4 file, 9 pages, 5 figure

    Cosmic Acceleration in Brans-Dicke Cosmology

    Full text link
    We consider Brans-Dicke theory with a self-interacting potential in Einstein conformal frame. We show that an accelerating expansion is possible in a spatially flat universe for large values of the Brans-Dicke parameter consistent with local gravity experiments.Comment: 10 Pages, 3 figures, To appear in General Relativity and Gravitatio

    Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?

    Full text link
    Within the frame of cosmologies where Dark Energy (DE) is a self--interacting scalar field, we allow for a CDM--DE coupling and non--zero neutrino masses, simultaneously. In their 0--0 version, i.e. in the absence of coupling and neutrino mass, these cosmologies provide an excellent fit to WMAP, SNIa and deep galaxy sample spectra, at least as good as \LambdaCDM. When the new degrees of freedom are open, we find that CDM--DE coupling and significant neutrino masses (~0.1eV per \nu species) are at least as likely as the 0--0 option and, in some cases, even statistically favoured. Results are obtained by using a Monte Carlo Markov Chain approach.Comment: 18 pages, 10 figures, submitted to JCA

    Deviation From \Lambda CDM With Cosmic Strings Networks

    Full text link
    In this work, we consider a network of cosmic strings to explain possible deviation from \Lambda CDM behaviour. We use different observational data to constrain the model and show that a small but non zero contribution from the string network is allowed by the observational data which can result in a reasonable departure from \Lambda CDM evolution. But by calculating the Bayesian Evidence, we show that the present data still strongly favour the concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for publication in European Physical Journal
    corecore