3,062 research outputs found

    Fractal Bubble Cosmology: A concordant cosmological model?

    Full text link
    The Fractal Bubble model has been proposed as a viable cosmology that does not require dark energy to account for cosmic acceleration, but rather attributes its observational signature to the formation of structure. In this paper it is demonstrated that, in contrast to previous findings, this model is not a good fit to cosmological supernovae data; there is significant tension in the best fit parameters obtained from different samples, whereas LCDM is able to fit all datasets consistently. Furthermore, the concordance between galaxy clustering scales and data from the cosmic microwave background is not achieved with the most recent supernova compilations. The validity of the FB formalism as a sound cosmological model is further challenged as it is shown that previous studies of this model achieve concordance by requiring a value for the present day Hubble constant that is derived from supernovae data containing an arbitrary distance normalisation.Comment: 6 pages, 3 figures, revised version published in MNRAS letter

    Properties of SN-host galaxies

    Full text link
    It is of prime importance to recognize evolution and extinction effects in supernovae results as a function of redshift, for SN Ia to be considered as distance indicators. This review surveys all observational data searching for an evolution and/or extinction, according to host morphology. For instance, it has been observed that high-z SNe Ia have bluer colours than the local ones: although this goes against extinction to explain why SN are dimmer with redshift until z ~ 1, supporting a decelerating universe, it also demonstrates intrinsic evolution effects. -- SNe Ia could evolve because the age and metallicity of their progenitors evolve. The main parameter is carbon abundance. Smaller C leads to a dimmer SN Ia and also less scatter on peak brightness, as it is the case in elliptical galaxy today. Age of the progenitor is an important factor: young populations lead to brighter SNe Ia, as in spiral galaxies, and a spread in ages lead to a larger scatter, explaining the observed lower scatter at high z. -- Selection biases also play a role, like the Malmquist bias; high-z SNe Ia are found at larger distance from their host center: there is more obscuration in the center, and also detection is easier with no contamination from the center. This might be one of the reason why less obscuration has been found for SNe Ia at high z. -- There is clearly a sample evolution with z: currently only the less bright SNe Ia are detected at high z, with less scatter. The brightest objects have a slowly declining light-curve, and at high z, no slow decline has been observed. This may be interpreted as an age effect, high-z SN having younger progenitors.Comment: 10 pages, 5 figures, review paper in "Supernovae and dust" (Paris, May 2003), to be published by New Astronomy Review

    Natural extension of the Generalised Uncertainty Principle

    Full text link
    We discuss a gedanken experiment for the simultaneous measurement of the position and momentum of a particle in de Sitter spacetime. We propose an extension of the so-called generalized uncertainty principle (GUP) which implies the existence of a minimum observable momentum. The new GUP is directly connected to the nonzero cosmological constant, which becomes a necessary ingredient for a more complete picture of the quantum spacetime.Comment: 4 pages, 1 figure, v2 with added references, revised and extended as published in CQ

    Adding ROS Scavengers to Cold K\u3csup\u3e+\u3c/sup\u3e Cardioplegia Reduces Superoxide Emission During 2 h Global Cold Cardiac Ischemia

    Get PDF
    We reported that the combination of reactive oxygen species (ROS) quenchers Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), catalase, and glutathione (MCG) given before 2 hours cold ischemia better protected cardiac mitochondria against cold ischemia and warm reperfusion (IR)-induced damage than MnTBAP alone. Here, we hypothesize that high K+ cardioplegia (CP) plus MCG would provide added protection of mitochondrial bioenergetics and cardiac function against IR injury. Using fluorescence spectrophotometry, we monitored redox balance, ie reduced nicotinamide adenine dinucleotide and flavin adenine dinucleotide (NADH/FAD), superoxide (O2 ‱−), and mitochondrial Ca2+ (m[Ca2+]) in the left ventricular free wall. Guinea pig isolated hearts were perfused with either Krebs Ringer’s (KR) solution, CP, or CP + MCG, before and during 27°C perfusion followed immediately by 2 hours of global ischemia at 27°C. Drugs were washed out with KR at the onset of 2 hours 37°C reperfusion. After 120 minutes warm reperfusion, myocardial infarction was lowest in the CP + MCG group and highest in the KR group. Developed left ventricular pressure recovery was similar in CP and CP + MCG and was better than in the KR group. O2 ‱−, m[Ca2+], and NADH/FAD were significantly different between the treatment and KR groups. O2 ‱− was lower in CP + MCG than in the CP group. This study suggests that CP and ROS quenchers act in parallel to improve mitochondrial function and to provide protection against IR injury at 27°C

    Comparison of Cumulative Planimetry versus Manual Dissection to Assess Experimental Infarct Size in Isolated Hearts

    Get PDF
    Introduction Infarct size (IS) is an important variable to estimate cardiac ischemia/reperfusion injury in animal models. Triphenyltetrazolium chloride (TTC) stains viable cells red while leaving infarcted cells unstained. To quantify IS, infarcted and non-infarcted tissue is often manually dissected and weighed (IS-DW). An alternative is to measure infarcted areas by cumulative planimetry (IS-CP). Methods We prospectively compared these two methods in 141 Langendorff-prepared guinea pig hearts (1.44 ± 0.02 g) that were part of different studies on mechanisms of cardioprotection. Hearts were perfused with Krebs–Ringer\u27s and subjected to 30 min global ischemia after various cardioprotective treatments. Two hours after reperfusion hearts were cut into 6–7 transverse sections (3 mm) and stained for 5 min in 1% TTC and 0.1 M KH2PO4 buffer (pH 7.4, 38 °C). Each slice was first scanned and its infarcted area measured with Image 1.62 software (NIH). Infarctions in individual slices of each heart were averaged (IS-CP) on the basis of their weight. After scanning, IS-DW was determined by careful manual dissection of infarcted from non-infarcted tissue and measuring their respective total weight. Results We found limited tissue permeation of TTC in relation to the slice thickness leaving tissue in the center unstained, as well as significant cross-contamination of stained vs. unstained tissue after manual dissection. IS-CP and IS-DW ranged from 6.0 to 73.1% and 19.4 to 70.5%, respectively, and correlated as follows: IS-DW = (27.6 ± 1.4) + (0.518 ± 0.038) ‱ IS-CP; r = 0.75 (Pearson), p \u3c 0.001. In addition, IS-CP correlated better with return of function after reperfusion like developed left ventricular pressure, contractility and relaxation, and myocardial oxygen consumption. Discussion Despite a good correlation between both methods, limited tissue permeation by TTC diffusion and limited precision in the ability to manually dissect stained from unstained tissue leads to an overestimation of infarct size by dissection and weighing compared to cumulative planimetry

    Why we need to see the dark matter to understand the dark energy

    Full text link
    The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents separately without making strong assumptions.Comment: 4 pages, to be published in the Journal of Physics: Conference Series as a contribution to the 2007 Europhysics Conference on High Energy Physic

    The R_h=ct Universe Without Inflation

    Full text link
    The horizon problem in the standard model of cosmology (LDCM) arises from the observed uniformity of the cosmic microwave background radiation, which has the same temperature everywhere (except for tiny, stochastic fluctuations), even in regions on opposite sides of the sky, which appear to lie outside of each other's causal horizon. Since no physical process propagating at or below lightspeed could have brought them into thermal equilibrium, it appears that the universe in its infancy required highly improbable initial conditions. In this paper, we examine this well-known problem by considering photon propagation through a Friedmann-Robertson-Walker (FRW) spacetime at a more fundamental level than has been attempted before, demonstrating that the horizon problem only emerges for a subset of FRW cosmologies, such as LCDM, that include an early phase of rapid deceleration. We show that the horizon problem is nonexistent for the recently introduced R_h=ct universe, obviating the principal motivation for the inclusion of inflation. We demonstrate through direct calculation that, in the R_h=ct universe, even opposite sides of the cosmos have remained causally connected to us - and to each other - from the very first moments in the universe's expansion. Therefore, within the context of the R_h=ct universe, the hypothesized inflationary epoch from t=10^{-35} seconds to 10^{-32} seconds was not needed to fix this particular "problem", though it may still provide benefits to cosmology for other reasons.Comment: 17 pages, 5 figures. arXiv Slight revisions in refereed version. Accepted for publication in Astronomy & Astrophysic

    KATP Channel Openers Have Opposite Effects on Mitochondrial Respiration Under Different Energetic Conditions

    Get PDF
    Mitochondrial (m) KATP channel opening has been implicated in triggering cardiac preconditioning. Its consequence on mitochondrial respiration, however, remains unclear. We investigated the effects of two different KATP channel openers and antagonists on mitochondrial respiration under two different energetic conditions. Oxygen consumption was measured for complex I (pyruvate/malate) or complex II (succinate with rotenone) substrates in mitochondria from fresh guinea pig hearts. One of two mKATP channel openers, pinacidil or diazoxide, was given before adenosine diphosphate in the absence or presence of an mKATP channel antagonist, glibenclamide or 5-hydroxydecanoate. Without ATP synthase inhibition, both mKATP channel openers differentially attenuated mitochondrial respiration. Neither mKATP channel antagonist abolished these effects. When ATP synthase was inhibited by oligomycin to decrease [ATP], both mKATP channel openers accelerated respiration for both substrate groups. This was abolished by mKATP channel blockade. Thus, under energetically more physiological conditions, the main effect of mKATP channel openers on mitochondrial respiration is differential inhibition independent of mKATP channel opening. In contrast, under energetically less physiological conditions, mKATP channel opening can be evidenced by accelerated respiration and blockade by antagonists. Therefore, the effects of mKATP channel openers on mitochondrial function likely depend on the experimental conditions and the cell\u27s underlying energetic state

    The Rate of Type Ia Supernovae at High Redshift

    Full text link
    We derive the rates of Type Ia supernovae (SNIa) over a wide range of redshifts using a complete sample from the IfA Deep Survey. This sample of more than 100 SNIa is the largest set ever collected from a single survey, and therefore uniquely powerful for a detailed supernova rate (SNR) calculation. Measurements of the SNR as a function of cosmological time offer a glimpse into the relationship between the star formation rate (SFR) and Type Ia SNR, and may provide evidence for the progenitor pathway. We observe a progressively increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR measurements are consistent with a short time delay (t~1 Gyr) with respect to the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the conversion factor between star formation and SNIa rates, as determined for a delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete measurements of the Type Ia SNR at z>1 are necessary to conclusively determine the SFR--SNR relationship and constrain SNIa evolutionary pathways.Comment: 37 pages, 9 figures, accepted for publication in Astrophysical Journal. Figures 7-9 correcte

    Sub-horizon Perturbation Behavior in Extended Quintessence

    Full text link
    In the general context of scalar-tensor theories, we consider a model in which a scalar field coupled to the Ricci scalar in the gravitational sector of the Lagrangian, is also playing the role of an ``Extended Quintessence'' field, dominating the energy content of the Universe at the present time. In this framework, we study the linear evolution of the perturbations in the Quintessence energy density, showing that a new phenomenon, named here ``gravitational dragging'', can enhance the scalar field density perturbations as much as they reach the non-linear regime. The possibility of dark energy clumps formation is thus discussed.Comment: Proceedings of the 5th International UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe (Dark Matter 2002), Marina del Rey, California, USA, 20-22 February 200
    • 

    corecore