262 research outputs found

    The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues

    Get PDF
    The sodium/iodide symporter (NIS) is an intrinsic plasma membrane protein that mediates active iodide transport into the thyroid gland and into several extrathyroidal tissues. NIS-mediated iodide uptake plays a pivotal role in the biosynthesis of thyroid hormones, of which iodide is an essential constituent. For 80 years, radioiodide has been used for the diagnosis and treatment of thyroid cancer, a successful theranostic agent that is extending its use to extrathyroidal malignancies. The purpose of this review is to focus on the most recent findings regarding the mechanisms that regulate NIS both in thyroid and extra-thyroidal tissues. Among other issues, we discuss the different transcriptional regulatory elements that govern NIS transcription in different tissues, the epigenetic modifications that regulate its expression, and the role that miRNAs play in fine-tuning NIS after being transcribed. A review on how hormones, cytokines, and iodide itself regulate NIS is provided. We also review the present stage of understanding NIS dysregulation in cancer, occupied mainly by convergent signaling pathways and by new insights in the route that NIS follows through different subcellular compartments to the plasma membrane. Furthermore, we cover NIS distribution and function in the increasing number of extrathyroidal tissues that express the symporter, as well as the role that NIS plays in tumor progression independently of its transport activity.post-print5810 K

    Impaired microRNA processing by DICER1 downregulation endows thyroid cancer with increased aggressiveness.

    Get PDF
    The global downregulation of microRNAs (miRNAs) is emerging as a common hallmark of cancer. However, the mechanisms underlying this phenomenon are not well known. We identified that the oncogenic miR-146b-5p attenuates miRNA biosynthesis by targeting DICER1 and reducing its expression. DICER1 overexpression inhibited all the miR-146binduced aggressive phenotypes in thyroid cells. Systemic injection of an anti-miR-146b in mice with orthotopic thyroid tumors suppressed tumor growth and recovered DICER1 levels. Notably, DICER1 downregulation promoted proliferation, migration, invasion, and epithelial-mesenchymal transition through miRNA downregulation. Our analysis of The Cancer Genome Atlas revealed a general decrease in DICER1 expression in thyroid cancer that was associated with a worse clinical outcome. Administration of the small-molecule enoxacin to promote DICER1 complex activity reduced tumor aggressiveness both in vitro and in vivo. Overall, our data confirm DICER1 as a tumor suppressor and show that oncogenic miR-146b contributes to its downregulation. Moreover, our results highlight a potential therapeutic application of RNA-based therapies including miRNA inhibitors and restoration of the biogenesis machinery, which may provide treatments for thyroid and other cancers.post-print3221 K

    Ras subcellular localization inversely regulates thyroid tumor growth and dissemination

    Get PDF
    RAS mutations are the second most common genetic alteration in thyroid tumors. However, the extent to which they are associated with the most aggressive phenotypes is still controversial. Regarding their malignancy, the majority of RAS mutant tumors are classified as undetermined, which complicates their clinical management and can lead to undesired under-or overtreatment. Using the chick embryo spontaneous metastasis model, we herein demonstrate that the aggressiveness of HRAS-transformed thyroid cells, as determined by the ability to extravasate and metastasize at distant organs, is orchestrated by HRAS subcellular localization. Remarkably, aggressiveness inversely correlates with tumor size. In this respect, we also show that RAS sitespecific capacity to regulate tumor growth and dissemination is dependent on VEGF-B secretion. Furthermore, we have identified the acyl protein thioesterase APT-1 as a determinant of thyroid tumor growth versus dissemination. We show that alterations in APT-1 expression levels can dramatically affect the behavior of thyroid tumors, based on its role as a regulator of HRAS sublocalization at distinct plasma membrane microdomains. In agreement, APT-1 emerges in thyroid cancer clinical samples as a prognostic factor. As such, APT-1 levels could serve as a biomarker that could help in the stratification of HRAS mutant thyroid tumors based on their aggressiveness.PC lab is supported by grant RTI2018-096658B-100 from the Spanish Ministry of Science (MICIU/AEI/FEDER, UE). Santisteban, Riesco and Crespo Laboratories are supported jointly by grants from Asociación Española Contra el Cancer (AECC; GCB141423113) and CIBERONC from the Instituto de Salud Carlos III (ISCIII). PS acknowledges support from: SAF2016-75531-R (MINECO/FEDER, UE); B2017/BMD-3724 Tironet2 (Comunidad de Madrid) and PID2019-105303RB-I00/AEI/10.13039/501100011033 from Ministerio de Ciencia e Innovación (MICIN). B.C is funded by Retos Jóvenes Investigadores grant SAF2015-73364-JIN (MICIU/AEI/FEDER, UE), a PIE grant from Consejo Superior de Investigaciones Científicas (CSIC)- MICIU and the Ramón y Cajal Research Program (MICIU, RYC2018-024004-I)

    Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNPF-mediated alternative splicing.

    Get PDF
    It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate diseaseprogression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumorsenriched with advanced disease patients with a median follow-up of 96 months. MiRNome profiles correlated with tumor-specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differentialexpression analysis revealed a consistent hsa-miR-139-5p downexpression in primary carcinomas from patients withrecurrent/metastatic disease compared to disease-free patients, sustained in paired local metastases and validated in publiclypost-print1,62 M

    BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma.

    Get PDF
    Introduction: Conservative active surveillance has been proposed for low-risk papillary thyroid microcarcinoma (PTMC), defined as 641.0 cm and lacking clinical aggressive features, but controversy exists with accepting it as not all such PTMCs are uniformly destined for benign prognosis. This study investigated whether BRAF V600E status could further risk stratify PTMC, particularly low-risk PTMC, and can thus help with more accurate case selection for conservative management. Methods: This international multicenter study included 743 patients treated with total thyroidectomy for PTMC (584 women and 159 men), with a median age of 49 years (interquartile range [IQR], 39-59 years) and a median follow-up time of 53 months (IQR, 25-93 months). Results: On overall analyses of all PTMCs, tumour recurrences were 6.4% (32/502) versus 10.8% (26/241) in BRAF mutation-negative versus BRAF mutation-positive patients (P = 0.041), with a hazard ratio (HR) of 2.44 (95% CI (confidence interval), 1.15-5.20) after multivariate adjustment for confounding clinical factors. On the analyses of low-risk PTMC, recurrences were 1.3% (5/383) versus 4.3% (6/139) in BRAF mutation-negative versus BRAF mutation-positive patients, with an HR of 6.65 (95% CI, 1.80-24.65) after adjustment for confounding clinical factors. BRAF mutation was associated with a significant decline in the Kaplan-Meier recurrence-free survival curve in low-risk PTMC. Conclusions: BRAF V600E differentiates the recurrence risk of PTMC, particularly low-risk PTMC. Given the robust negative predictive value, conservative active surveillance of BRAF mutation-negative low-risk PTMC is reasonable whereas the increased recurrence risk and other well-known adverse effects of BRAF V600E make the feasibility of long-term conservative surveillance uncertain for BRAF mutation-positive PTMC

    BRAF V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer

    Get PDF
    [Context]: How lymph node metastasis (LNM)-associated mortality risk is affected by BRAF V600E in papillary thyroid cancer (PTC) remains undefined. [Objective]: To study whether BRAF V600E affected LNM-associated mortality in PTC. [Design, Setting, and Participants]: We retrospectively analyzed the effect of LNM on PTC-specific mortality with respect to BRAF status in 2638 patients (2015 females and 623 males) from 11 centers in 6 countries, with median age of 46 [interquartile range (IQR) 35-58] years and median follow-up time of 58 (IQR 26-107) months. [Results]: Overall, LNM showed a modest mortality risk in wild-type BRAF patients but a strong one in BRAF V600E patients. In conventional PTC (CPTC), LNM showed no increased mortality risk in wild-type BRAF patients but a robustly increased one in BRAF V600E patients; mortality rates were 2/659 (0.3%) vs 4/321 (1.2%) in non-LNM vs LNM patients (P = 0.094) with wild-type BRAF, corresponding to a hazard ratio (HR) (95% CI) of 4.37 (0.80-23.89), which remained insignificant at 3.32 (0.52-21.14) after multivariate adjustment. In BRAF V600E CPTC, morality rates were 7/515 (1.4%) vs 28/363 (7.7%) in non-LNM vs LNM patients (P < 0.001), corresponding to an HR of 4.90 (2.12-11.29) or, after multivariate adjustment, 5.76 (2.19-15.11). Adjusted mortality HR of coexisting LNM and BRAF V600E vs absence of both was 27.39 (5.15-145.80), with Kaplan-Meier analyses showing a similar synergism. [Conclusions]: LNM-associated mortality risk is sharply differentiated by the BRAF status in PTC; in CPTC, LNM showed no increased mortality risk with wild-type BRAF but a robust one with BRAF mutation. These results have strong clinical relevance.This work was supported partly by the following funding at the individual participating centers: Polish National Center of Research and Development MILESTONE Project—molecular diagnostics and imaging in individualized therapy for breast, thyroid and prostate cancer, grant No. STRATEGMED2/267398/4/ NCBR/2015 (Poland, AC, BJ); Grants No. PID2019-105303RB-I00 (AEI from MICINN), GCB14142311CRES (AECC Foundation), and B2017/BMD-3724 TIRONET2-CM (Spain; PS and GR-E); Grant No. AZV 16-32665A and MH CZ-DRO (Institute of Endocrinology-EU, 00023761) (Czech Republic; BB, VS); NIH/ National Institute on Aging Grant No. 5R03AG042334-02 (LY); and grants from the Qingdao Science and Technology Project for People’s Livelihood No.13-1-3-58-nsh (China; FW) and the Innovative Platform Project of Qingdao No.12-1-2-15-jch (China; YW)

    Patient Age-Associated Mortality Risk Is Differentiated by BRAF V600E Status in Papillary Thyroid Cancer

    Get PDF
    PurposeFor the past 65 years, patient age at diagnosis has been widely used as a major mortality risk factor in the risk stratification of papillary thyroid cancer (PTC), but whether this is generally applicable, particularly in patients with different BRAF genetic backgrounds, is unclear. The current study was designed to test whether patient age at diagnosis is a major mortality risk factor.Patients and MethodsWe conducted a comparative study of the relationship between patient age at diagnosis and PTC-specific mortality with respect to BRAF status in 2,638 patients (623 men and 2,015 women) with a median age of 46 years (interquartile range, 35 to 58 years) at diagnosis and a median follow-up time of 58 months (interquartile range, 26 to 107 months). Eleven medical centers from six countries participated in this study.ResultsThere was a linear association between patient age and mortality in patients with BRAF V600E mutation, but not in patients with wild-type BRAF, in whom the mortality rate remained low and flat with increasing age. Kaplan-Meier survival curves rapidly declined with increasing age in patients with BRAF V600E mutation but did not decline in patients with wild-type BRAF, even beyond age 75 years. The association between mortality and age in patients with BRAF V600E was independent of clinicopathologic risk factors. Similar results were observed when only patients with the conventional variant of PTC were analyzed.ConclusionThe long-observed age-associated mortality risk in PTC is dependent on BRAF status; age is a strong, continuous, and independent mortality risk factor in patients with BRAF V600E mutation but not in patients with wild-type BRAF. These results question the conventional general use of patient age as a high-risk factor in PTC and call for differentiation between patients with BRAF V600E and wild-type BRAF when applying age to risk stratification and management of PTC

    Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    Get PDF
    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology

    Targeting BRAF in thyroid cancer

    Get PDF
    Activating mutations in the gene encoding BRAF are the most commonly identified oncogenic abnormalities in papillary thyroid cancer. In vitro and in vivo models have demonstrated that overexpression of activated BRAF induces malignant transformation and aggressive tumour behaviour. BRAF and other RAF kinases are frequently activated by other thyroid oncogenes and are important mediators of their biological effects including dedifferentiation and proliferation. Because current therapeutic options for patients with thyroid cancers that are aggressive and/or do not respond to standard therapies are limited, BRAF and its downstream effectors represent attractive therapeutic targets. In this review, data supporting a role for BRAF activation in thyroid cancer development and establishing the potential therapeutic efficacy of BRAF-targeted agents in patients with thyroid cancer will be reviewed
    corecore