415 research outputs found

    Real-World Applications for Virtual Fences – What Are Potential Benefits for Conservation?

    Get PDF
    Livestock grazing can enhance biodiversity and ecosystem services in agricultural landscapes. In many parts of Europe, however, grazing has lost its importance, especially in the dairy sector. Large proportions of permanent grassland have been converted to arable land or intensified by fertilization and frequent defoliation. The disappearance of large herbivores and extensively grazed pastures contributes to the loss of structural, functional and biological diversity and ecosystem services. Modern technologies, which circumvent the cost- and labour-intensive installation of physical fences, could facilitate a precise spatio-temporal management of livestock and promote grazing. We reviewed the literature on the state-of-the-art of virtual fencing, focusing on the prospects of these technologies to enhance environmentally-friendly livestock farming. Novel virtual fencing technologies are expected to entail various ecological benefits, but this has rarely been tested in practice. Future experiments not only need to increase sample sizes and study periods to evaluate the long-term effectiveness of virtual fencing, but also need to be specifically designed for answering questions of conservation interest. Virtual fences have the potential to reconcile agronomic with ecological demands and bring livestock back into the landscape, but whether they will actually find broad application depends on further multidisciplinary research on animal welfare, agronomic, social and legal aspects

    A new and morphologically distinct population of cavernicolous Poecilia mexicana (Poeciliidae: Teleostei)

    Get PDF
    The cave molly, Poecilia mexicana, from the Cueva del Azufre, a sulfur cave in Tabasco, Mexico, ranks among the best-studied cave fishes worldwide, despite being known from a single population only. Here we describe a newly discovered second population of cave-dwelling P. mexicana from a nearby, but mostly non-sulfidic cave (Luna Azufre). Despite apparent similarities between the two populations (such as reduced eye diameter and reduced pigmentation), a geometric morphometric analysis revealed pronounced morphological differentiation between the two cave form

    Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana)

    Get PDF
    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation

    Chemical vapor deposition and infiltration for the production of tungsten fiber reinforced tungsten composite material

    Get PDF
    Contribution submission to the conference Regensburg 2016Chemical vapor deposition and infiltration for the productionof tungsten fiber reinforced tungsten composite material —∙Martin Aumann1, Jan Willem Coenen1, Hanns Gietl2, TillHoeschen2, Johann Riesch2, Klaus Schmid2, Rudolf Neu2, andChristian Linsmeier1 — 1Forschungszentrum Juelich GmbH, Institutfür Energie- und Klimaforschung, 52425 Juelich — 2Max-Planck-Institut für Plasmaphysik, 85748 GarchingDue to its high melting point, high corrosion resistance and its preferableproperties in terms of hydrogen retention, tungsten is a promisingcandidate in future nuclear fusion devices. However, the mechanicalbehavior of tungsten is crucial, as it is inherently brittle at room temperature.As possibility to overcome this brittleness, a composite materialcan be formed, which shows pseudo-ductility and therefore avoidscatastrophic failure of the material. A possibility to produce such aWf/W-composite is chemical vapor deposition and chemical vapor infiltration,where tungsten is deposited on small tungsten wires throughthe reaction of WF6 and H2. With ongoing infiltration time, pores areformed between the fibers, which decrease in size through the chemicalreaction. For better process understanding, a pore model was established,which solves the mass balance inside the pore and the resultingpore diameter simultaneously. It shows a significant difference in diameterfor longer infiltration times. This behavior shall be proved inexperiments with an experimental pore, which is similar to the simulatedone. Furthermore also kinetic investigations on the chemicalsurface reaction are carried out to increase the process understanding.Part: MMType: Vortrag;TalkTopic: Transport (Diffusion, Leitfähigkeit,Wärme)/ Transport (Diffusion,conductivity, heat)Email: [email protected]

    Tungsten fibre-reinforced composites for advanced plasma facing components

    Get PDF
    AbstractThe European Fusion Roadmap foresees water cooled plasma facing components in a first DEMO design in order to provide enough margin for the cooling capacity and to only moderately extrapolate the technology which was developed and tested for ITER. In order to make best use of the water cooling concept copper (Cu) and copper-chromium-zirconium alloy (CuCrZr) are envisaged as heat sink whereas as armour tungsten (W) based materials will be used. Combining both materials in a high heat flux component asks for an increase of their operational range towards higher temperature in case of Cu/CuCrZr and lower temperatures for W. A remedy for both issues- brittleness of W and degrading strength of CuCrZr- could be the use of W fibres (Wf) in W and Cu based composites. Fibre preforms could be manufactured with industrially viable textile techniques. Flat textiles with a combination of 150/70 µm W wires have been chosen for layered deposition of tungsten-fibre reinforced tungsten (Wf/W) samples and tubular multi-layered braidings with W wire thickness of 50 µm were produced as a preform for tungsten-fibre reinforced copper (Wf /Cu) tubes. Cu melt infiltration was performed together with an industrial partner resulting in sample tubes without any blowholes. Property estimation by mean field homogenisation predicts strongly enhanced strength of the Wf/CuCrZr composite compared to its pure CuCrZr counterpart. Wf /W composites show very high toughness and damage tolerance even at room temperature. Cyclic load tests reveal that the extrinsic toughening mechanisms counteracting the crack growth are active and stable. FEM simulations of the Wf/W composite suggest that the influence of fibre debonding, which is an integral part of the toughening mechanisms, and reduced thermal conductivity of the fibre due to the necessary interlayers do not strongly influence the thermal properties of future components
    • …
    corecore