1,009 research outputs found

    E-profiles, Conflict, and Shared Understanding in Distributed Teams

    Get PDF
    In this research, we examine the efficacy of a technological intervention in shaping distributed team members’ perceptions about their teammates. We argue that, by exposing distributed team members to electronic profiles (e-profiles) with information emphasizing their personal similarities with one another, distributed teams should experience lower levels of relational and task conflict. In turn, reductions in conflict should facilitate a shared understanding among team members, which should increase their team effectiveness. The results of a laboratory experiment of 46 distributed teams generally support these assertions. Specifically, we found that a simple, technological intervention can reduce task conflict in distributed teams, which, in turn, improves shared understanding and team effectiveness. We also uncovered important differences in the antecedents and impacts of relational and task conflict. Although we found that the e-profile intervention was effective in accounting for variance in task conflict (R2 = .41), it was quite poor in accounting for variance in relational conflict (R2 = .04). The model accounts for 33% and 43% of the variance in shared understanding and team effectiveness, respectively. Taken together, the results of this research suggest that the information shared about team members in distributed team settings has important implications for their ability to collaborate, achieve a common understanding of their work, and accomplish their task effectively. We suggest that e-profiles may be a useful intervention for management to enhance effectiveness in distributed teams

    Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map

    Get PDF
    Abstract We report the most complete genetic map to have been constructed for the genus Populus

    Cerebral cavernous malformations associated to meningioma: High penetrance in a novel family mutated in the PDCD10 gene

    Get PDF
    Multiple familial meningiomas occur in rare genetic syndromes, particularly neurofibromatosis type 2. The association of meningiomas and cerebral cavernous malformations (CCMs) has been reported in few patients in the medical literature. The purpose of our study is to corroborate a preferential association of CCMs and multiple meningiomas in subjects harbouring mutations in the PDCD10 gene (also known as CCM3). Three members of an Italian family affected by seizures underwent conventional brain Magnetic Resonance Imaging (MRI) with gadolinium contrast agent including gradient echo (GRE) imaging. The three CCM-causative genes were sequenced by Sanger method. Literature data reporting patients with coexistence of CCMs and meningiomas were reviewed. MRI demonstrated dural-based meningioma-like lesions associated to multiple parenchymal CCMs in all affected individuals. A disease-causative mutation in the PDCD10 gene (p.Gln112PhefsX13) was identified. Based on neuroradiological and molecular data as well as on literature review, we outline a consistent association between PDCD10 mutations and a syndrome of CCMs with multiple meningiomas. This condition should be considered in the differential diagnosis of multiple/familial meningioma syndromes. In case of multiple/familial meningioma the use of appropriate MRI technique may include GRE and/or susceptibility-weighted imaging (SWI) to rule out CCM. By contrast, proper post-gadolinium scans may aid defining dural lesions in CCM patients and are indicated in PDCD10-mutated individuals

    A quantum McKay correspondence for fractional 2p-branes on LG orbifolds

    Full text link
    We study fractional 2p-branes and their intersection numbers in non-compact orbifolds as well the continuation of these objects in Kahler moduli space to coherent sheaves in the corresponding smooth non-compact Calabi-Yau manifolds. We show that the restriction of these objects to compact Calabi-Yau hypersurfaces gives the new fractional branes in LG orbifolds constructed by Ashok et. al. in hep-th/0401135. We thus demonstrate the equivalence of the B-type branes corresponding to linear boundary conditions in LG orbifolds, originally constructed in hep-th/9907131, to a subset of those constructed in LG orbifolds using boundary fermions and matrix factorization of the world-sheet superpotential. The relationship between the coherent sheaves corresponding to the fractional two-branes leads to a generalization of the McKay correspondence that we call the quantum McKay correspondence due to a close parallel with the construction of branes on non-supersymmetric orbifolds. We also provide evidence that the boundary states associated to these branes in a conformal field theory description corresponds to a sub-class of the boundary states associated to the permutation branes in the Gepner model associated with the LG orbifold.Comment: LaTeX2e, 1+39 pages, 3 figures (v2) refs added, typos and report no. correcte

    Stroke Factors Associated with Thrombolysis Use in Hospitals in Singapore and US: A Cross-Registry Comparative Study

    Get PDF
    Background and Objectives: This paper aims to describe and compare the characteristics of 2 stroke populations in Singapore and in St. Louis, USA, and to document thrombolysis rates and contrast factors associated with its uptake in both populations. Methods: The stroke populations described were from the Singapore Stroke Registry (SSR) in -Singapore and the Cognitive Rehabilitation Research Group Stroke Registry (CRRGSR) in St. Louis, MO, USA. The registries were compared in terms of demographics and stroke risk factor history. Logistic regression was used to determine factors associated with thrombolysis uptake. Results: A total of 39,323 and 8,106 episodes were recorded in SSR and CRRGSR, respectively, from 2005 to 2012. Compared to CRRGSR, patients in SSR were older, male, and from the ethnic majority. Thrombolysis rates in SSR and CRRGSR were 2.5 and 8.2%, respectively, for the study period. History of ischemic heart disease or atrial fibrillation was associated with increased uptake in both populations, while history of stroke was associated with lower uptake. For SSR, younger age and males were associated with increased uptake, while having a history of smoking or diabetes was associated with decreased uptake. For CRRGSR, ethnic minority status was associated with decreased uptake. Conclusions: The comparison of stroke populations in Singapore and St Louis revealed distinct differences in clinicodemographics of the 2 groups. Thrombolysis uptake was driven by nonethnicity demographics in Singapore. Ethnicity was the only demographic driver of uptake in the CRRGSR population, highlighting the need to target ethnic minorities in increasing access to thrombolysis

    Uncommon acquired Gerbode defect following extensive bicuspid aortic valve endocarditis

    Get PDF
    Gerbode defect is a rare type of left ventricle to right atrium shunt. It is usually congenital in origin, but acquired cases are also described, mainly following infective endocarditis, valve replacement, trauma or acute myocardial infarction. We report a case of a 50-year-old man who suffered an extensive and complex infective endocarditis involving a bicuspid aortic valve, the mitral-aortic intervalvular fibrosa and the anterior leaflet of the mitral valve. After dual valve replacement and annular reconstruction, a shunt between the left ventricle and the right atrium - Gerbode defect, and a severe leak of the mitral prosthesis were detected. Reintervention was performed with successful shunt closure with an autologous pericardial patch and paravalvular leak correction. No major complications occurred denying the immediate post-surgery period and the follow-up at the first year was uneventful

    Regulatory feedback cycle of the insulin-degrading enzyme and the amyloid precursor protein intracellular domain: Implications for Alzheimer's disease

    Get PDF
    One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-β (Aβ) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aβ-production and -degradation is necessary to prevent pathological Aβ-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aβ-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aβ-degradation is linked in a regulatory cycle to achieve this balance. In absence of Aβ-production caused by APP or Presenilin deficiency, IDE-mediated Aβ-degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ-secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH-SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aβ-production and Aβ-degradation forming a regulatory cycle in which AICD promotes Aβ-degradation via IDE and IDE itself limits its own production by degrading AICD

    Improving oceanic overflow representation in climate models : the Gravity Current Entrainment Climate Process Team

    Get PDF
    Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 657-670, doi:10.1175/2008BAMS2667.1.Oceanic overflows are bottom-trapped density currents originating in semienclosed basins, such as the Nordic seas, or on continental shelves, such as the Antarctic shelf. Overflows are the source of most of the abyssal waters, and therefore play an important role in the large-scale ocean circulation, forming a component of the sinking branch of the thermohaline circulation. As they descend the continental slope, overflows mix vigorously with the surrounding oceanic waters, changing their density and transport significantly. These mixing processes occur on spatial scales well below the resolution of ocean climate models, with the result that deep waters and deep western boundary currents are simulated poorly. The Gravity Current Entrainment Climate Process Team was established by the U.S. Climate Variability and Prediction (CLIVAR) Program to accelerate the development and implementation of improved representations of overflows within large-scale climate models, bringing together climate model developers with those conducting observational, numerical, and laboratory process studies of overflows. Here, the organization of the Climate Process Team is described, and a few of the successes and lessons learned during this collaboration are highlighted, with some emphasis on the well-observed Mediterranean overflow. The Climate Process Team has developed several different overflow parameterizations, which are examined in a hierarchy of ocean models, from comparatively well-resolved regional models to the largest-scale global climate models.The Gravity Current Entrainment Climate Process Team was funded by NSF grants OCE-0336850 and OCE-0611572 and NOAA as a contribution to U.S.CLIVAR
    • …
    corecore