37 research outputs found

    Injury Causes and Severity in Pediatric Traumatic Brain Injury Patients Admitted to the Ward or Intensive Care Unit: A Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study

    Get PDF
    Background: Traumatic brain injury (TBI) is the leading cause of death and disability in children. It includes a range of different pathologies that differ considerably from adult TBI. Analyzing and understanding injury patterns of pediatric TBI is essential to establishing new preventive efforts as well as to improve clinical management.Methods: The multi-center, prospectively collected CENTER-TBI core and registry databases were screened and patients were included when younger than 18 years at enrollment and admitted to the regular ward (admission stratum) or intensive care unit (ICU stratum) following TBI. Patient demographics, injury causes, clinical findings, brain CT imaging details, and outcome (GOSE at 6 months follow-up) were retrieved and analyzed. Injury characteristics were compared between patients admitted to the regular ward and ICU and multivariate analysis of factors predicting an unfavorable outcome (GOSE 1-4) was performed. Results from the core study were compared to the registry dataset which includes larger patient numbers but no follow-up data.Results: Two hundred and twenty seven patients in the core dataset and 687 patients in the registry dataset were included in this study. In the core dataset, road-traffic incidents were the most common cause of injury overall and in the ICU stratum, while incidental falls were most common in the admission stratum. Brain injury was considered serious to severe in the majority of patients and concurrent injuries in other body parts were very common. Intracranial abnormalities were detected in 60% of initial brain CTs. Intra- and extracranial surgical interventions were performed in one-fifth of patients. The overall mortality rate was 3% and the rate of unfavorable outcome 10%, with those numbers being considerably higher among ICU patients. GCS and the occurrence of secondary insults could be identified as independent predictors for an unfavorable outcome. Injury characteristics from the core study could be confirmed in the registry dataset.Conclusion: Our study displays the most common injury causes and characteristics of pediatric TBI patients that are treated in the regular ward or ICU in Europe. Road-traffic incidents were especially common in ICU patients, indicating that preventive efforts could be effective in decreasing the incidence of severe TBI in children.</div

    Transplantation of Neural Precursor Cells Attenuates Chronic Immune Environment in Cervical Spinal Cord Injury

    Get PDF
    Inflammation after traumatic spinal cord injury (SCI) is non-resolving and thus still present in chronic injury stages. It plays a key role in the pathophysiology of SCI and has been associated with further neurodegeneration and development of neuropathic pain. Neural precursor cells (NPCs) have been shown to reduce the acute and sub-acute inflammatory response after SCI. In the present study, we examined effects of NPC transplantation on the immune environment in chronic stages of SCI. SCI was induced in rats by clip-compression of the cervical spinal cord at the level C6-C7. NPCs were transplanted 10 days post-injury. The functional outcome was assessed weekly for 8 weeks using the Basso, Beattie, and Bresnahan scale, the CatWalk system, and the grid walk test. Afterwards, the rats were sacrificed, and spinal cord sections were examined for M1/M2 macrophages, T lymphocytes, astrogliosis, and apoptosis using immunofluorescence staining. Rats treated with NPCs had compared to the control group significantly fewer pro-inflammatory M1 macrophages and reduced immunodensity for inducible nitric oxide synthase (iNOS), their marker enzyme. Anti-inflammatory M2 macrophages were rarely present 8 weeks after the SCI. In this model, the sub-acute transplantation of NPCs did not support survival and proliferation of M2 macrophages. Post-traumatic apoptosis, however, was significantly reduced in the NPC group, which might be explained by the altered microenvironment following NPC transplantation. Corresponding to these findings, reactive astrogliosis was significantly reduced in NPC-transplanted animals. Furthermore, we could observe a trend toward smaller cavity sizes and functional improvement following NPC transplantation. Our data suggest that transplantation of NPCs following SCI might attenuate inflammation even in chronic injury stages. This might prevent further neurodegeneration and could also set a stage for improved neuroregeneration after SCI

    Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study.

    Get PDF
    BACKGROUND: After traumatic brain injury (TBI), brain tissue can be further damaged when cerebral autoregulation is impaired. Managing cerebral perfusion pressure (CPP) according to computed "optimal CPP" values based on cerebrovascular reactivity indices might contribute to preventing such secondary injuries. In this study, we examined the discriminative value of a low-resolution long pressure reactivity index (LPRx) and its derived "optimal CPP" in comparison to the well-established high-resolution pressure reactivity index (PRx). METHODS: Using the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study dataset, the association of LPRx (correlation between 1-min averages of intracranial pressure and arterial blood pressure over a moving time frame of 20 min) and PRx (correlation between 10-s averages of intracranial pressure and arterial blood pressure over a moving time frame of 5 min) to outcome was assessed and compared using univariate and multivariate regression analysis. "Optimal CPP" values were calculated using a multi-window algorithm that was based on either LPRx or PRx, and their discriminative ability was compared. RESULTS: LPRx and PRx were both significant predictors of mortality in univariate and multivariate regression analysis, but PRx displayed a higher discriminative ability. Similarly, deviations of actual CPP from "optimal CPP" values calculated from each index were significantly associated with outcome in univariate and multivariate analysis. "Optimal CPP" based on PRx, however, trended towards more precise predictions. CONCLUSIONS: LPRx and its derived "optimal CPP" which are based on low-resolution data were significantly associated with outcome after TBI. However, they did not reach the discriminative ability of the high-resolution PRx and its derived "optimal CPP." Nevertheless, LPRx might still be an interesting tool to assess cerebrovascular reactivity in centers without high-resolution signal monitoring. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02210221. First submitted July 29, 2014. First posted August 6, 2014

    Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study

    Get PDF
    After traumatic brain injury (TBI), brain tissue can be further damaged when cerebral autoregulation is impaired. Managing cerebral perfusion pressure (CPP) according to computed “optimal CPP” values based on cerebrovascular reactivity indices might contribute to preventing such secondary injuries. In this study, we examined the discriminative value of a low-resolution long pressure reactivity index (LPRx) and its derived “optimal CPP” in comparison to the well-established high-resolution pressure reactivity index (PRx).MethodsUsing the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study dataset, the association of LPRx (correlation between 1-min averages of intracranial pressure and arterial blood pressure over a moving time frame of 20 min) and PRx (correlation between 10-s averages of intracranial pressure and arterial blood pressure over a moving time frame of 5 min) to outcome was assessed and compared using univariate and multivariate regression analysis. “Optimal CPP” values were calculated using a multi-window algorithm that was based on either LPRx or PRx, and their discriminative ability was compared.ResultsLPRx and PRx were both significant predictors of mortality in univariate and multivariate regression analysis, but PRx displayed a higher discriminative ability. Similarly, deviations of actual CPP from “optimal CPP” values calculated from each index were significantly associated with outcome in univariate and multivariate analysis. “Optimal CPP” based on PRx, however, trended towards more precise predictions.ConclusionsLPRx and its derived “optimal CPP” which are based on low-resolution data were significantly associated with outcome after TBI. However, they did not reach the discriminative ability of the high-resolution PRx and its derived “optimal CPP.” Nevertheless, LPRx might still be an interesting tool to assess cerebrovascular reactivity in centers without high-resolution signal monitoring.Trial registrationClinicalTrials.gov Identifier: NCT02210221. First submitted July 29, 2014. First posted August 6, 2014.</p

    Brief research report: in-depth immunophenotyping reveals stability of CD19 CAR T-cells over time

    Get PDF
    Variability or stability might have an impact on treatment success and toxicity of CD19 CAR T-cells. We conducted a prospective observational study of 12 patients treated with Tisagenlecleucel for CD19+ B-cell malignancies. Using a 31-color spectral flow cytometry panel, we analyzed differentiation stages and exhaustion markers of CAR T-cell subsets prior to CAR T-cell infusion and longitudinally during 6 months of follow-up. The majority of activation markers on CAR T-cells showed stable expression patterns over time and were not associated with response to therapy or toxicity. Unsupervised cluster analysis revealed an immune signature of CAR T-cell products associated with the development of immune cell-associated neurotoxicity syndrome. Warranting validation in an independent patient cohort, in-depth phenotyping of CAR T-cell products as well as longitudinal monitoring post cell transfer might become a valuable tool to increase efficacy and safety of CAR T-cell therapy

    Increased breath naphthalene in children with asthma and wheeze of the All Age Asthma Cohort (ALLIANCE).

    Get PDF
    Background&#xD;Exhaled breath contains numerous volatile organic compounds (VOCs) known to be related to lung disease like asthma. Its collection is non-invasive, simple to perform and therefore an attractive method for the use even in young children. We analysed breath in children of the multicenter All Age Asthma Cohort (ALLIANCE) to evaluate if "breathomics" have the potential to phenotype patients with asthma and wheeze, and to identify extrinsic risk factors for underlying disease mechanisms.&#xD;Methods&#xD;A breath sample was collected from 142 children (asthma: 51, pre-school wheezers: 55, healthy controls: 36) and analysed using gas chromatography-mass spectrometry (GC/MS). Children were diagnosed according to GINA guidelines and comprehensively examined each year over up to seven years. Forty children repeated the breath collection after 24 or 48 months. &#xD;Results&#xD;Most breath VOCs differing between groups reflect the exposome of the children. We observed lower levels of lifestyle-related VOCs and higher levels of the environmental pollutants, especially naphthalene, in children with asthma or wheeze. Naphthalene was also higher in symptomatic patients and in wheezers with recent inhaled corticosteroid use. No relationships with lung function or TH2 inflammation were detected.&#xD;Conclusion&#xD;Increased levels of naphthalene in asthmatics and wheezers and the relationship to disease severity could indicate a role of environmental or indoor air pollution for the development or progress of asthma. Breath VOCs might help to elucidate the role of the exposome for the development of asthma.&#xD;The study was registered at ClinicalTrials.gov (NCT02496468).&#xD;&#xD

    Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study

    Get PDF
    Abstract: Background: After traumatic brain injury (TBI), brain tissue can be further damaged when cerebral autoregulation is impaired. Managing cerebral perfusion pressure (CPP) according to computed “optimal CPP” values based on cerebrovascular reactivity indices might contribute to preventing such secondary injuries. In this study, we examined the discriminative value of a low-resolution long pressure reactivity index (LPRx) and its derived “optimal CPP” in comparison to the well-established high-resolution pressure reactivity index (PRx). Methods: Using the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study dataset, the association of LPRx (correlation between 1-min averages of intracranial pressure and arterial blood pressure over a moving time frame of 20 min) and PRx (correlation between 10-s averages of intracranial pressure and arterial blood pressure over a moving time frame of 5 min) to outcome was assessed and compared using univariate and multivariate regression analysis. “Optimal CPP” values were calculated using a multi-window algorithm that was based on either LPRx or PRx, and their discriminative ability was compared. Results: LPRx and PRx were both significant predictors of mortality in univariate and multivariate regression analysis, but PRx displayed a higher discriminative ability. Similarly, deviations of actual CPP from “optimal CPP” values calculated from each index were significantly associated with outcome in univariate and multivariate analysis. “Optimal CPP” based on PRx, however, trended towards more precise predictions. Conclusions: LPRx and its derived “optimal CPP” which are based on low-resolution data were significantly associated with outcome after TBI. However, they did not reach the discriminative ability of the high-resolution PRx and its derived “optimal CPP.” Nevertheless, LPRx might still be an interesting tool to assess cerebrovascular reactivity in centers without high-resolution signal monitoring. Trial registration: ClinicalTrials.gov Identifier: NCT02210221. First submitted July 29, 2014. First posted August 6, 2014

    Two sides of the same coin? On the common etiology of Right-Wing Authoritarianism and Social Dominance Orientation

    No full text
    Nacke L, Riemann R. Two sides of the same coin? On the common etiology of Right-Wing Authoritarianism and Social Dominance Orientation. Personality and Individual Differences. 2023;207: 112160.Right-Wing Authoritarianism (RWA) and Social Dominance Orientation (SDO) are often regarded as two basic dimensions of individual differences in socio-political attitudes. Since both RWA and SDO are powerful pre-dictors of various kinds of political beliefs and prejudices, a fair amount of prior research has been conducted to examine etiological factors contributing to individual differences in both. According to the Dual Process Model (DPM), RWA and SDO are each caused by distinct personality dispositions and socialization experiences. The present study examines these assumptions using data from the German TwinLife study. Applying a bivariate Cholesky design, data from 3177 twins and their siblings were used to calculate genetic and environmental correlations. We found a very high genetic correlation (rA = 0.943) and bivariate heritability (83.04 %), whereas nonshared and shared environmental effects were negligible. The results are consistent with the assumptions of the DPM on the distinct influence of environmental factors on RWA and SDO but, in contrast, indicate a common genetic basis. Following previous findings, we argue that this may be the same genetic basis underlying openness to experience. Further theoretical implications regarding the emergence of differences in sociopolitical attitudes are discussed

    Impact of decompressive laminectomy on the functional outcome of patients with metastatic spinal cord compression and neurological impairment

    No full text
    Metastatic spinal cord compression (MSCC) is a frequent phenomenon in advanced tumor diseases with often severe neurological impairments. Affected patients are often treated by decompressive laminectomy. To assess the impact of this procedure on Karnofsky Performance Index (KPI) and Frankel Grade (FG) at discharge, a single center retrospective cohort study of neurologically impaired MSCC-patients treated with decompressive laminectomy between 2004 and 2014 was performed. 101 patients (27 female/74 male; age 66.1 ± 11.5 years) were identified. Prostate was the most common primary tumor site (40%) and progressive disease was present in 74%. At admission, 80% of patients were non-ambulatory (FG A-C). Imaging revealed prevalently thoracic MSCC (78%). Emergency surgery (&amp;lt; 24 h) was performed in 71% and rates of complications and revision surgery were 6% and 4%, respectively. At discharge, FG had improved in 61% of cases, and 51% of patients had regained ambulation. Univariate predictors for not regaining the ability to walk were bowl dysfunction (p = 0.0015), KPI &amp;lt; 50% (p = 0.048) and FG &amp;lt; C (p = 0.001) prior to surgery. In conclusion, decompressive laminectomy showed beneficial effects on the functional outcome at discharge. A good neurological status prior to surgery was key predictor for a good functional outcome
    corecore