15 research outputs found

    Submarine mass wasting processes along the continental slope of the Middle American Trench

    Get PDF
    This Thesis work presents a regional-scale study of submarine mass-wasting phenomena of the continental slope of a subduction zone. The nature of the study makes it a new, outstanding contribution for two main reasons: 1) The large-scale and interdisciplinary characters of the study conform a comprehensive investigation - unmatched by any other previous study- of land sliding processes along the slope of a tectonically-active convergent margin. 2) The investigation is also unique because it looks into the processes at a subduction zone dominated by tectonic erosion. This type of geological setting represents about 50% of the world subduction zone systems, but it has been overlooked in previous studies of mass wasting processes. The study region is located along a segment of the Middle America Trench (MAT) that extends about 1500 km from the Costa Rica - Panama border to the Guatemala - Mexico boundary. The study investigates the structures of the continental slope of the Pacific-Ocean-side of Central America and the trench-region of the incoming oceanic Cocos plate. We have investigated the distribution of submarine slope failures and their deposits, the type of failures, and their seafloor morphology. We have also investigated possible preconditioning and triggering mechanisms, and the relationship of those mechanisms and the variability in failure type to the tectonic processes of this particular geological setting. Finally, we have made some inferences of the significance of mass wasting processes in the long-term evolution of the slope, compared to other geological settings. The Central America subduction zone has been the locus of intense, continued geoscientific investigation since the late 1970s that culminated with the selection of the region as the focus site for the US-Margins program and the German SFB574 during the first decade of the 21st century. Those two programs included research in a broad range of topics that attempted to advance our understanding of the entire subduction zone system. As a result numerous projects from both communities have benefited from close collaborations. This PhD work is integrated within the research project SFB 574, financed by the DFG, that has as main research goal investigations on “Volatiles and fluids in subduction zones and their impact on climate feedback and trigger mechanisms for natural disasters”. We have analyzed a database containing a compilation of multibeam bathymetry of 7 research cruises, 3 cruises of side-scan sonar imagery and core samples of a dedicated cruise. The database has been assembled in a collaborative effort between both USMargins and SFB 574 communities. Based on seafloor morphology and backscatter imagery, and seismic images we have mapped and classified 147 submarine slope failures in the region. Slope failures vary in their type, abundance and distribution along and across the slope to define six distinct segments along the MAT. The lateral extent of the six segments correlates well with similar along-trench segmentation in the character of the incoming ocean plate, expressed as changes in its relief, age and crustal thickness. We have also found that the six along-margin segments display changes in the across-slope structuring of the different geological elements, including changes in the morphological expression of upper, middle and lower slope, total slope width, and slope dip angle. This structuring of the elements of the slope appears to be related to a longterm evolution caused by the tectonic processes associated to subduction erosion. One segment covers the area of under-thrusting of Cocos Ridge under the shelf-slope offshore Osa Peninsula (southern Costa Rica). Here, 1-km-high narrow, sharp ridges and small conical seamounts festooning Cocos Ridge cause slumps often with rock and debris avalanches from a short, steep continental slope. A second segment occurs offshore central Costa Rica, where large conical seamounts and ridges of 1-3 km high and 40 km wide under-thrust the continental slope causing large re-entries of the slope toe, and furrows across the slope formed by collapse, of previously uplifted upper plate, along steep headwalls behind the under-thrusting seamounts. Failures have generated large slumps, debris flows and rock avalanches containing blocks up to 500 m in diameter. In contrast at a third segment in northern Costa Rica, offshore the North Nicoya Peninsula, a smooth incoming plate is parallel opposite by a continental slope lacking relevant mass wasting structures. The contiguous fourth segment offshore Nicaragua displays a steep middle slope with large translational slides opposite an ocean plate with numerous 1-km-tall seamounts and 100s-meter-high horst and graben relief. Under the fifth segment, offshore El Salvador, subducts a well developed horst and graben relief, but somewhat surprising the segment displays a generally failure-free slope, and only the uppermost slope displays a series of small translation slides The plate under-thrusting the sixth segment offshore Guatemala is similarly characterized by a horst and graben terrain. However, here a steeper slope exhibits frequent, small-scale failures, a few km wide, across the entire segment

    Pacific offshore record of plinian arc volcanism in Central America: 3. Application to forearc geology

    Get PDF
    [1] Sediment gravity cores collected on the Pacific slope and incoming plate offshore Central America reach up to 400 ka back in time and contain numerous ash layers from plinian eruptions at the Central American Volcanic Arc. The compositionally distinct widespread ash layers form a framework of marker horizons that allow us to stratigraphically correlate the sediment successions along and across the Middle America Trench. Moreover, ash layers correlated with 26 known eruptions on land provide absolute time lines through these successions. Having demonstrated the correlations in part 1, we here investigate implications for submarine sedimentary processes. Average accumulation rates of pelagic sediment packages constrained by bracketing tephras of known age range from ∌1–6 cm/ka on the incoming plate to 30–40 cm/ka on the continental slope. There are time intervals in which the apparent pelagic sedimentation rates significantly vary laterally both on the forearc and on the incoming plate where steady conditions are usually expected. A period of unsteadiness at 17–25 ka on the forearc coincides with a period of intense erosion on land probably triggered by tectonic processes. Unsteady conditions on the incoming plate are attributed to bend faulting across the outer rise triggering erosion and resedimentation. Extremely low apparent sedimentation rates at time intervals >50–80 ka suggest stronger tectonic activity than during younger times and indicate bend faulting is unsteady on a longer timescale. Submarine landslides are often associated with ash layers forming structurally weak zones used for detachment. Ash beds constrain ages of >60 ka, ∌19 ka, and <6 ka for three landslides offshore Nicaragua. Phases of intense fluid venting at mud mounds produce typical sediments around the mound that become covered by normal pelagic sediment during phases of weak or no activity. Using intercalated ash layers, we determine for the first time the durations (several hundred to 9000 years) of highly active periods in the multistage growth history of mud mounds offshore Central America, which is essential to understand general mud-mound dynamics

    Submarine slope failures along the convergent continental margin of the Middle America Trench

    Get PDF
    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ∌1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated

    Tephra layers : a controlling factor on submarine translational sliding?

    Get PDF
    Submarine slope failures occur at all continental margins, but the processes generating different mass wasting phenomena remain poorly understood. Multibeam bathymetry mapping of the Middle America Trench reveals numerous continental slope failures of different dimensions and origin. For example, large rotational slumps have been interpreted to be caused by slope collapse in the wake of subducting seamounts. In contrast, the mechanisms generating translational slides have not yet been described. Lithology, shear strength measurements, density, and pore water alkalinity from a sediment core across a slide plane indicate that a few centimeters thick intercalated volcanic tephra layer marks the detachment surface. The ash layer can be correlated to the San Antonio tephra, emplaced by the 6000 year old caldera-forming eruption from Masaya-Caldera, Nicaragua. The distal deposits of this eruption are widespread along the continental slope and ocean plate offshore Nicaragua. Grain size measurements permit us to estimate the reconstruction of the original ash layer thickness at the investigated slide. Direct shear test experiments on Middle American ashes show a high volume reduction during shearing. This indicates that marine tephra layers have the highest hydraulic conductivity of the different types of slope sediment, enabling significant volume reduction to take place under undrained conditions. This makes ash layers mechanically distinct within slope sediment sequences. Here we propose a mechanism by which ash layers may become weak planes that promote translational sliding. The mechanism implies that ground shaking by large earthquakes induces rearrangement of ash shards causing their compaction (volume reduction) and produces a rapid accumulation of water in the upper part of the layer that is capped by impermeable clay. The water-rich veneer abruptly reduces shear strength, creating a detachment plane for translational sliding. Tephra layers might act as slide detachment planes at convergent margins of subducting zones, at submarine slopes of volcanic islands, and at submerged volcano slopes in lakes

    Complex submarine landsliding processes caused by subduction of large seamounts along the Middle America Trench

    Get PDF
    European Geosciences Union General Assembly 2014 (EGU2014), 27 april - 2 may 2014, Vienna, Austria.-- 1 pageSubduction of kms-tall and tens-of-km wide seamounts cause important landsliding events at subduction zones around the word. Along the Middle America Trench, previous work based on regional swath bathymetry maps (with 100 m grids) and multichannel seismic images have shown that seamount subduction produces large-scale slumping and sliding. Some of the mass wasting event may have been catastrophic and numerical modeling has indicated that they may have produced important local tsunamis. We have re-evaluated the structure of several active submarine landlide complexes caused by large seamount subduction using side scan sonar data. The comparison of the side scan sonar data to local high-resolution bathymetry grids indicates that the backscatter data has a resolution that is somewhat similar to that produced by a 10 m bathymetry grid. Although this is an arbitrary comparison, the side scan sonar data provides comparatively much higher resolution information than the previously used regional multibeam bathymetry. We have mapped the geometry and relief of the head and side walls of the complexes, the distribution of scars and the different sediment deposits to produce a new interpretation of the modes of landsliding during subduction of large seamounts. The new higher resolution information shows that landsliding processes are considerably more complex than formerly assumed. Landslides are of notably smaller dimensions that the lower resolution data had previously appear to indicate. However, signiïŹcantly large events may have occur far more often than earlier interpretations had inferred representing a more common threat that previously assumedPeer Reviewe

    Submarine mass wasting processes along slopes influenced by long-term tectonic erosion: the Middle America Trench

    No full text
    ABSTRACT FINAL ID: T21E-04 We have studied submarine land-sliding using a seafloor topography and side-scan sonar data along the continental slope of the Middle America Trench. This subduction zone is dominated by tectonic erosion. Studies during the last few decades have shown mass wasting structures at submarine slopes around the world’s continental margins, hot-spot volcanic islands, and volcanic island arcs. At Atlantic margins slides initiate at low slope angles and appear triggered by high sediment accumulation rates. At volcanic islands large-scale land-sliding is caused by volcano sector collapse. At subduction zones with accretionary prisms, land-sliding seems associated to contractional tectonics and fluid seepage. Submarine mass movements at subduction zones dominated by tectonic erosion are comparatively limited. However, tectonic erosion is active in about 50% of the world subduction zones. Distinct failures have been studied at slopes in Peru, Costa Rica, Nicaragua and New Zealand but extensive surveys have not been obtained. We present a comprehensive data sets on seafloor mapping on a subduction zone dominated by tectonic erosion. The data covers much of the Middle America Trench (MAT) from the Mexico-Guatemala border to Costa Rica – Panama border. The goal of this contribution is to evaluate how long-term tectonics caused by subduction erosion preconditions the continental slope structure to modulate the generation of land-sliding. We show that changes in subduction erosion processes, interacting with the local topography of the subducting plate correlate to variations in the type and distribution of failures along the slope of the region

    An Overview of the Role of Long-Term Tectonics and Incoming Plate Structure on Segmentation of Submarine Mass Wasting Phenomena Along the Middle America Trench

    No full text
    Submarine Mass Movements and Their Consequences, 5th International Symposium.-- 12 pages, 5 figuresWe study mass wasting along the Middle America Trench (MAT), a subduction zone dominated by tectonic erosion, using a comprehensive data set of seafloor relief. We integrate previous studies of long-term tectonic processes to analyze how they influence the evolution of the slope structure and precondition the continental slope for mass wasting. We have used the distribution of an inventory of 147 slope failure structures along the MAT to discuss their relation to subduction erosion. We interpret that preconditioning of the slope by long-term tectonics, interacts in a shorter-term scale with features on the under-thrusting oceanic plate to modulate the abundance and types of mass wasting phenomena. The complex origin of the incoming oceanic plate has produced abrupt lateral changes in plate age, crustal thickness, relief, and response to bending deformation at the trench, leading to its partitioning into six segments. We found that the continental-slope failure style and abundance are partitioned into six segments that spatially match the ocean plate segmentsThis publication is contribution no. 210 of the Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University funded by Deutsche Forschungsgemeinschaft (DFG). The data were collected during cruises of German R/V Sonne funded by the Ministry of Science and Education (BMBF) and R/V Meteor the Deutsche Forschungsgemeinschaft (DFG), and US R/V Ewing funded by NSFPeer Reviewe

    Late Pliocene to early Pleistocene Giant mass transport deposits along Svalbard Continental Margin

    No full text
    European Geosciences Union (EGU) General Assembly 2018, 8-13 April 2018, Vienna, Austria.-- 1 pageAlong North Atlantic margins, high accumulation rates on the slope during the period of full glaciation, or deglaciation, and geological processes related to the associated sea-level-rise, had been linked to higher frequency of large-giant submarine mass wasting phenomena. Most reported large submarine slides from glaciated margins date to times during middle-late Pleistocene and Holocene, and have been often linked to the reasonably well understood timing of the high glaciation or deglaciation there. However, recent statistical analysis of the well dated events have cast doubts on the validity of the assumption that submarine slide frequency depends on processes associated to sea level changes and/ or on high accumulation rates. To study submarine sediment dynamic processes in the north Atlantic, we re-processed about 1000km of multichannel seismic reflection data from the continental slope offshore south-west Svalbard that extend into the deep water basin bounded by Knipovich ridge. The new seismic images mapped the proximal and distal parts of very large submarine MTDs. Internally these MTDs show complex features such as inclined bedding and faulting. These deep and up to 1km thick MTDs can be correlated 300km along slope by seismic profiles of up to160kmlength. Comparisons to former findings in the same area indicate that their size needs to be reconsidered at least as twice as large as previous estimations. These giant large mass wasting deposits (MTDs) indicate a Plio- to early Pleistocene age of 2.7 to 2.1Ma, which is well before high glaciation or de-glaciation times. Similar large MTDs reported from offshore Norway in the southern Barents Sea occurred somewhat later but we propose that a similar geological process may have caused all of them, since they appear to share downslope transport mechanism. Our current hypothesis is that they are all associated to a growing ice shield at the beginning of the last Northern Hemisphere glaciationPeer Reviewe
    corecore