14 research outputs found
Recommended from our members
Hydrogel-Based Flexible Energy Storage Using Electrodes Based on Polypyrrole and Carbon Threads
Developing new flexible and electroactive materials is a significant challenge to producing safe, reliable, and environmentally friendly energy storage devices. This study introduces a promising electrolyte system that fulfills these requirements. First, polypyrrole (PPy) nanotubes are electropolymerized in graphite-thread electrodes using methyl orange (MO) templates in an acidic medium. The modification increases the conductivity and does not compromise the flexibility of the electrodes. Next, flexible supercapacitors are built using hydrogel prepared from poly(vinyl alcohol) (PVA)/sodium alginate (SA) obtained by freezeâthawing and swollen with ionic solutions as an electrolyte. The material exhibits a homogenous and porous hydrogel matrix allowing a high conductivity of 3.6 mS cmâ1 as-prepared while displaying great versatility, changing its electrochemical and mechanical properties depending on the swollen electrolyte. Therefore, it allows its combination with modified graphite-thread electrodes into a quasi-solid electrochemical energy storage device, achieving a specific capacitance (Cs) value of 66 F gâ1 at 0.5 A gâ1. Finally, the flexible device exhibits specific energy and power values of 19.9 W kgâ1 and 3.0 Wh kgâ1, relying on the liquid phase in the hydrogel matrix produced from biodegradable polymers. This study shows an environment friendly, flexible, and tunable quasi-solid electrolyte, depending on a simple swell experiment to shape its properties according to its application
Kinetic Approach to Elucidate Size Controllable Features in Nanocomposites of Gold Nanoparticles and Poly(3,4-ethylenedioxythiophene) in Aqueous Dispersion Stabilized by Gum Acacia
Research and development of conductive
nanomaterials based on biocompatible
matrices has been greatly rising in the past decade since synergistic
properties can be achieved by combining metallic nanoparticles and
natural/conductive polymers. PolyÂ(3,4-ethylenedioxythiophene) (PEDOT)
is known to be an intrinsically conductive polymer, difficult to handle
in aqueous medium. Therefore, in this work, we present a physical-chemical
perspective in the development of novel aqueous dispersible nanocomposites
of gold nanoparticles (AuNPs) and PEDOT, obtained through a one-pot
synthesis, using the biopolymer gum acacia (GA) as stabilizer. A thorough
kinetic study was carried out and correlated with microscopy analyses,
evidencing that the concentration of GA influences the AuNP size by
affecting their nucleation and growth stages. A quantitative detailing
using kinetic models is shown, which to the best of our knowledge
is the first report relating mechanism and rate constants with size
controllable features of the stabilizer. Two distinct kinetic profiles
were obtained and related to a critical concentration of GA (1%<sub>w/v</sub>): (i) above, a characteristic nucleationâgrowth
sigmoidal profile and (ii) below, an unexpected bilogistic profile,
accounted to a two-step growth process. Indeed, the bilogistic kinetic
model, usual in population growth studies, is presented herein for
the first time regarding NP formation. These results incite the targeted
design of novel nanomaterials, using kinetic studies as a promising
tool to understand the mechanism of the size-controllable features
of GA. Overall, we evidence that the nanocomposite characteristics
can be optimized rationally. Also, considering the natural occurrence
of GA, we contribute to the sustainable development of highly water-dispersible
PEDOT-derived nanocomposites
Alginate/Polypyrrole Hydrogels as Potential Extraction Phase for Determination of Atrazine, Caffeine, and Progesterone in Aqueous Samples
Hydrogels are smart-swelling 3D structures capable of incorporating/expelling water while maintaining their structures. When combined with electroactive materials, such as conducting polymers, the resulting composite may present tunable properties. Herein, the preparation and characterization of alginate-polypyrrole composite hydrogels is described using chemical polymerization to form polypyrrole inside and around alginate beads, employing two simple protocols. These materials were qualitatively tested as extraction phases, using the solid-phase extraction technique, for the pre-concentration of contaminants of emerging concern (atrazine, caffeine, and progesterone). Compared to alginate alone, the composite materials showed a modified extraction capacity, especially for the extraction of progesterone. It was shown that the alginate matrix also contributes to the extraction, not only acting as a support but also as an active extraction media, evidencing a good combination of materials
Alginate/Polypyrrole Hydrogels as Potential Extraction Phase for Determination of Atrazine, Caffeine, and Progesterone in Aqueous Samples
Hydrogels are smart-swelling 3D structures capable of incorporating/expelling water while maintaining their structures. When combined with electroactive materials, such as conducting polymers, the resulting composite may present tunable properties. Herein, the preparation and characterization of alginate-polypyrrole composite hydrogels is described using chemical polymerization to form polypyrrole inside and around alginate beads, employing two simple protocols. These materials were qualitatively tested as extraction phases, using the solid-phase extraction technique, for the pre-concentration of contaminants of emerging concern (atrazine, caffeine, and progesterone). Compared to alginate alone, the composite materials showed a modified extraction capacity, especially for the extraction of progesterone. It was shown that the alginate matrix also contributes to the extraction, not only acting as a support but also as an active extraction media, evidencing a good combination of materials
Evaluation of Polyvinyl Alcohol/Pectin-Based Hydrogel Disks as Extraction Phase for Determination of Steroidal Hormones in Aqueous Samples by GC-MS/MS
A new extraction phase based on hydrogel disks of polyvinyl alcohol (PVOH) and pectin was proposed, characterized and evaluated for the extraction of six steroidal hormones (estriol, estrone, 17β-estradiol, 17α-ethinylestradiol, progesterone, and testosterone) in aqueous samples with subsequent determination by gas chromatography-tandem mass spectrometry (GC-MS/MS) after the derivatization procedure. The developed extraction procedure was based on the solid phase extraction (SPE) technique, but employed hydrogel as the sorbent phase. The effects of several parameters, including the amount and composition of the sorbent phase, pH, sample volume, flow rate, and gel swelling over the extraction efficiency, were evaluated. Gels with lower swelling indexes and larger amounts of sorbent ensured higher extraction yields of analytes. The main benefits of using the PVOH/pectin-based hydrogel as the extraction phase are the ease of synthesis, low-cost preparation, and the possibility of reusing the extraction disks. Limits of quantification of 0.5 μg L−1 for estrone and 17β-estradiol, and 1 μg L−1 for testosterone, 17α-ethinylestradiol, progesterone, and estriol were obtained. Accuracy values ranged from 80% to 110%, while the inter-assay precision ranged from 0.23% to 22.2% and the intra-assay from 0.55% to 12.3%. Since the sorbent phase has an amphiphilic character, the use of hydrogels is promising for the extraction of medium-to-high polarity compounds
PYROLIGNEOUS LIQUOR PRODUCED FROM Acacia mearnsii DE WILD WOOD UNDER CONTROLLED CONDITIONS AS A RENEWABLE SOURCE OF CHEMICALS
Recebido em 07/04/2015; aceito em 02/06/2015; publicado na web em 13/07/2015 Acacia mearnsii de Wild (black wattle) is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/ MS). Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 °C, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact
PYROLIGNEOUS LIQUOR PRODUCED FROM Acacia mearnsii
Acacia mearnsii de Wild (black wattle) is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/MS). Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 ÂșC, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact