427 research outputs found

    A quasi-time-dependent radiative transfer model of OH104.9+2.4

    Full text link
    We investigate the pulsation-phase dependent properties of the circumstellar dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous modeling of the spectral energy distribution (SED) and near-infrared (NIR) visibilities (Riechers et al. 2004) has now been extended by means of a more detailed analysis of the pulsation-phase dependence of the model parameters of OH104.9+2.4. In order to investigate the temporal variation in the spatial structure of the CDS, additional NIR speckle interferometric observations in the K' band were carried out with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the diffraction-limited resolution of 74 mas was attained. Several key parameters of our previous best-fitting model had to be adjusted in order to be consistent with the newly extended amount of observational data. It was found that a simple rescaling of the bolometric flux F_bol is not sufficient to take the variability of the source into account, as the change in optical depth over a full pulsation cycle is rather high. On the other hand, the impact of a change in effective temperature T_eff on SED and visibility is rather small. However, observations, as well as models for other AGB stars, show the necessity of including a variation of T_eff with pulsation phase in the radiative transfer models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in Astronomy and Astrophysics. (v1: accepted version; v2: published version, minor grammatical changes

    CO-Dark Star Formation and Black Hole Activity in 3C 368 at z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    Get PDF
    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2-1) and [N II] 205 um lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ~6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latest episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2-1) line, down to a level twelve times lower than the expected value for star forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated through much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, though we argue unlikely, that the ensemble of fine structure lines are emitted from the region heated by the AGN.Comment: 10 pages, 4 figures, 2 tables, accepted for publication in the Astrophysical Journa

    Total Molecular Gas Masses of Planck - Herschel Selected Strongly Lensed Hyper Luminous Infrared Galaxies

    Get PDF
    We report the detection of CO(1 - 0) line emission from seven Planck and Herschel selected hyper luminous (LIR(8-1000um) > 10^13Lsun) infrared galaxies with the Green Bank Telescope (GBT). CO(1 - 0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 10^(13-14) Lsun), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33 - 3.26). The CO(1 - 0) lines show similar profiles as compared to Jup = 2 -4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 (pm 22) Lsun(K km s^-1 pc^-2)^-1 compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of = 0.93 (2 sources), = 0.34 (5 sources), and = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as uMH2 = (0.9 - 27.2) x 10^11(alphaCO/0.8)Msun, where u is the magnification factor and alphaCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times are, on average, tau = 80 Myr, which reveal vigorous starburst activity, and contrast the Gyr depletion timescales observed in local, normal star-forming galaxies.Comment: published in MNRAS, 9pages, 5fig

    Redshift Determination and CO Line Excitation Modeling for the Multiply Lensed Galaxy HLSW-01

    Get PDF
    We report on the redshift measurement and CO line excitation of HERMES J105751.1+573027 (HLSW-01), a strongly lensed submillimeter galaxy discovered in Herschel/SPIRE observations as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). HLSW-01 is an ultra-luminous galaxy with an intrinsic far-infrared luminosity of L _(FIR) = 1.4 × 10^(13) L _⊙, and is lensed by a massive group of galaxies into at least four images with a total magnification of μ = 10.9 ± 0.7. With the 100 GHz instantaneous bandwidth of the Z-Spec instrument on the Caltech Submillimeter Observatory, we robustly identify a redshift of z = 2.958 ± 0.007 for this source, using the simultaneous detection of four CO emission lines (J = 7 → 6, J = 8 → 7, J = 9 → 8, and J = 10 → 9). Combining the measured line fluxes for these high-J transitions with the J = 1 → 0, J = 3 → 2, and J = 5 → 4 line fluxes measured with the Green Bank Telescope, the Combined Array for Research in Millimeter Astronomy, and the Plateau de Bure Interferometer, respectively, we model the physical properties of the molecular gas in this galaxy. We find that the full CO spectral line energy distribution is described well by warm, moderate-density gas with T _(kin) = 86-235 K and n_H_2 = (1.1-3.5)x10^3 cm^(–3). However, it is possible that the highest-J transitions are tracing a small fraction of very dense gas in molecular cloud cores, and two-component models that include a warm/dense molecular gas phase with T _(kin) ~ 200 K, n_H_2 ~ 10^5 cm^(–3) are also consistent with these data. Higher signal-to-noise measurements of the J _(up) ≥ 7 transitions with high spectral resolution, combined with high spatial resolution CO maps, are needed to improve our understanding of the gas excitation, morphology, and dynamics of this interesting high-redshift galaxy

    HerMES: spectral energy distributions of submillimeter galaxies at z > 4.

    Get PDF
    We present a study of the infrared properties for a sample of seven spectroscopically confirmed submillimetre galaxies (SMGs) at z > 4.0. By combining ground-based near-infrared, Spitzer IRAC and MIPS, Herschel SPIRE, and ground-based submillimetre / millimeter photometry, we construct their spectral energy distributions (SEDs) and a composite model to fit the SEDs. The model includes a stellar emission component at λ rest 50μm. Six objects in the sample are detected at 250 and 350μm. The dust temperatures for the sources in this sample are in the range of 40–80 K, and their L FIR ∼ 10 13 Lo qualifies them as hyper-luminous infrared galaxies. The mean FIR-radio index for this sample is around (q) = 2.2 indicating no radio excess in their radio emission. Most sources in the sample have 24μmdetections corresponding to a rest-frame 4.5μm luminosity of Log 10 (L 4.5 /L ? )=11 ∼ 11.5. Their L 4.5 /L FIR ratios are very similar to those of starburst-dominated SMGs at z ∼ 2. The L CO − L FIR relation for this sample is consistent with that determined for local ULIRGs and SMGs at z ∼ 2. We conclude that SMGs at z > 4 are hotter and more luminous in the FIR but otherwise very similar to those at z ∼ 2. None of these sources show any sign of the strong QSO phase being triggered

    Enhanced [CII] emission in a z=4.76 submillimetre galaxy

    Get PDF
    We present the detection of bright [CII] emission in the z=4.76 submillimetre galaxy LESS J033229.4-275619 using the Atacama Pathfinder EXperiment. This represents the highest redshift [CII] detection in a submm selected, star-formation dominated system. The AGN contributions to the [CII] and far-infrared (FIR) luminosities are small. We find an atomic mass derived from [CII] comparable to the molecular mass derived from CO. The ratio of the [CII], CO and FIR luminosities imply a radiation field strength G_0~10^3 and a density ~10^4 cm^-3 in a kpc-scale starburst, as seen in local and high redshift starbursts. The high L_[CII]/L_FIR=2.4x10^-3 and the very high L_[CII]/L_CO(1-0) ~ 10^4 are reminiscent of low metallicity dwarf galaxies, suggesting that the highest redshift star-forming galaxies may also be characterised by lower metallicities. We discuss the implications of a reduced metallicity on studies of the gas reservoirs, and conclude that especially at very high redshift, [CII] may be a more powerful and reliable tracer of the interstellar matter than CO.Comment: 5 pages, 2 figures; accepted for publication in Astronomy & Astrophysics Letter
    • …
    corecore