463 research outputs found
Molecular Gas in Infrared Ultraluminous QSO Hosts
We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO)
hosts observed with the IRAM 30m telescope. The cold molecular gas reservoir in
these objects is in a range of 0.2--2.1 (adopting a
CO-to- conversion factor ). We find that the molecular gas properties of IR QSOs,
such as the molecular gas mass, star formation efficiency () and the CO (1-0) line widths, are indistinguishable
from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of
low- and high-redshift CO detected QSOs reveals a tight correlation between
L and for all QSOs. This suggests that,
similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust
heated by star formation rather than by active galactic nuclei (AGNs),
confirming similar findings from mid-infrared spectroscopic observations by
{\it Spitzer}. A correlation between the AGN-associated bolometric luminosities
and the CO line luminosities suggests that star formation and AGNs draw from
the same reservoir of gas and there is a link between star formation on
kpc scale and the central black hole accretion process on much smaller scales.Comment: 30 pages, 9 figures, accepted for publication in The Astrophysical
Journa
A quasi-time-dependent radiative transfer model of OH104.9+2.4
We investigate the pulsation-phase dependent properties of the circumstellar
dust shell (CDS) of the OH/IR star OH104.9+2.4 based on radiative transfer
modeling (RTM) using the code DUSTY. Our previous study concerning simultaneous
modeling of the spectral energy distribution (SED) and near-infrared (NIR)
visibilities (Riechers et al. 2004) has now been extended by means of a more
detailed analysis of the pulsation-phase dependence of the model parameters of
OH104.9+2.4. In order to investigate the temporal variation in the spatial
structure of the CDS, additional NIR speckle interferometric observations in
the K' band were carried out with the 6 m telescope of the Special
Astrophysical Observatory (SAO). At a wavelength of 2.12 micron the
diffraction-limited resolution of 74 mas was attained. Several key parameters
of our previous best-fitting model had to be adjusted in order to be consistent
with the newly extended amount of observational data. It was found that a
simple rescaling of the bolometric flux F_bol is not sufficient to take the
variability of the source into account, as the change in optical depth over a
full pulsation cycle is rather high. On the other hand, the impact of a change
in effective temperature T_eff on SED and visibility is rather small. However,
observations, as well as models for other AGB stars, show the necessity of
including a variation of T_eff with pulsation phase in the radiative transfer
models. Therefore, our new best-fitting model accounts for these changes.Comment: 7 pages, including 5 postscript figures and 3 tables. Published in
Astronomy and Astrophysics. (v1: accepted version; v2: published version,
minor grammatical changes
Spectral Simplicity of Apparent Complexity, Part II: Exact Complexities and Complexity Spectra
The meromorphic functional calculus developed in Part I overcomes the
nondiagonalizability of linear operators that arises often in the temporal
evolution of complex systems and is generic to the metadynamics of predicting
their behavior. Using the resulting spectral decomposition, we derive
closed-form expressions for correlation functions, finite-length Shannon
entropy-rate approximates, asymptotic entropy rate, excess entropy, transient
information, transient and asymptotic state uncertainty, and synchronization
information of stochastic processes generated by finite-state hidden Markov
models. This introduces analytical tractability to investigating information
processing in discrete-event stochastic processes, symbolic dynamics, and
chaotic dynamical systems. Comparisons reveal mathematical similarities between
complexity measures originally thought to capture distinct informational and
computational properties. We also introduce a new kind of spectral analysis via
coronal spectrograms and the frequency-dependent spectra of past-future mutual
information. We analyze a number of examples to illustrate the methods,
emphasizing processes with multivariate dependencies beyond pairwise
correlation. An appendix presents spectral decomposition calculations for one
example in full detail.Comment: 27 pages, 12 figures, 2 tables; most recent version at
http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt2.ht
Balancing Error and Dissipation in Computing
Modern digital electronics support remarkably reliable computing, especially
given the challenge of controlling nanoscale logical components that interact
in fluctuating environments. However, we demonstrate that the high-reliability
limit is subject to a fundamental error-energy-efficiency tradeoff that arises
from time-symmetric control: Requiring a low probability of error causes energy
consumption to diverge as logarithm of the inverse error rate for nonreciprocal
logical transitions. The reciprocity (self-invertibility) of a computation is a
stricter condition for thermodynamic efficiency than logical reversibility
(invertibility), the latter being the root of Landauer's work bound on erasing
information. Beyond engineered computation, the results identify a generic
error-dissipation tradeoff in steady-state transformations of genetic
information carried out by biological organisms. The lesson is that computation
under time-symmetric control cannot reach, and is often far above, the Landauer
limit. In this way, time-asymmetry becomes a design principle for
thermodynamically efficient computing.Comment: 19 pages, 8 figures; Supplementary material 7 pages, 1 figure;
http://csc.ucdavis.edu/~cmg/compmech/pubs/tsp.ht
- …