26 research outputs found

    An active interferometric method for extreme impedance on-wafer device measurements

    Get PDF
    Nano-scale devices and high-power transistors present extreme impedances, which are far removed from the 50-Ω reference impedance of conventional test equipment, resulting in a reduction in the measurement sensitivity as compared with impedances close to the reference impedance. This letter describes a novel method based on active interferometry to increase the measurement sensitivity of a vector network analyzer for measuring such extreme impedances, using only a single coupler. The theory of the method is explained with supporting simulation. An interferometry-based method is demonstrated for the first time with on-wafer measurements, resulting in an improved measurement sensitivity for extreme impedance device characterization of up to 9%

    An Active Interferometric Method for Extreme Impedance On-Wafer Device Measurements

    Full text link

    Establishing a New Form of Primary Impedance Standard at Millimeter-Wave Frequencies

    Get PDF
    This paper investigates the possibility of using layers of graphene to form primary impedance standards for millimeter-wave rectangular metallic waveguide. It is shown that standards with values of Y?, 2Y? and 3Y? can be produced by a monolayer, bilayer, or trilayer of graphene, respectively, where Y? is the characteristic admittance of the waveguide. These standards could then be used in the calibration of vector network analyzers

    Wireless microwave signal transmission for cryogenic applications

    Get PDF
    Microwave wireless signal propagation in cryogenic environments has applications in radio astronomy and quantum computing. This paper demonstrates for the first time a cryogenic wireless setup and investigates the antenna-to-antenna signal transmission in Liquid Nitrogen (LN) and inside the dilution refrigerator at room temperature (296 K). The antenna under investigation consists of a wideband antenna operating in from 8-12 GHz. The antenna was modelled and designed in CST MWS and fabricated on the Rogers RT/duroid 5880 substrate. The measured transmission coefficient (S21) results demonstrate that there was reasonable signal transmission between the antenna pairs when tested in LN (77 K) and inside the dilution refrigerator (tested at 296 K). The results indicate that the proposed Over- The-Air (OTA) system is suitable for cryogenic applications down to 77K

    Characterization of a compact wideband microwave metasurface lens for cryogenic applications

    Get PDF
    In this paper, we present characterization of a compact flat microwave lens operating between 6 GHz and 14 GHz using a near field scanning system. An X-band horn antenna and open-end rectangular waveguide were used as an illumination source and probe, respectively. |S21| is measured as the probe antenna moves on a plane orthogonal to the optical axis vertically and horizontally. The lens is made of a metasurface layer that is sandwiched by two layers of cross-oriented gratings. The overall dimension of the lens is 10 cm in diameter and 0.57 cm in thickness. The measurement results show that the lens's focal length is 8 cm, and the beamwidth (full width at half maximum (FWHM)) is 3.5 cm, A transmission efficiency of over 90% and a cross-polarization gain of 25 dB were achieved over the entire bandwidth. The measurement results at room temperature are in good agreement with numerical simulations. The proposed lens will be used in a cryogenic environment e.g. dilution refrigerators for quantum computing systems. More results at cryogenic temperature e.g, below 30 K will be shown at the conference

    The 2017 Terahertz Science and Technology Roadmap

    Get PDF
    Science and technologies based on terahertz frequency electromagnetic radiation (100GHz-30THz) have developed rapidly over the last 30 years. For most of the 20th century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to “real world” applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2016, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 17 sections that cover most of the key areas of THz Science and Technology. We hope that The 2016 Roadmap on THz Science and Technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore