4,056 research outputs found

    The flavor of neutrinos in muon decays at a neutrino factory and the LSND puzzle

    Get PDF
    The accurate prediction of the neutrino beam produced in muon decays and the absence of opposite helicity contamination for a particular neutrino flavor make a future neutrino factory the ideal place to look for the lepton flavor violating (LFV) decays of the kind \mu^+\ra e^+\nuebar\numu and lepton number violating (LNV) processes like \mu^-\ra e^-\nue\numu. Excellent sensitivities can be achieved using a detector capable of muon and/or electron identification with charge discrimination. This would allow to set experimental limits that improve current ones by more than two orders of magnitude and test the hypothesis that the LSND excess is due to such anomalous decays, rather than neutrino flavor oscillations in vacuum.Comment: 19 pages, 4 figure

    Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates

    Get PDF
    High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements

    Monitoring urban heat island through google earth engine. Potentialities and difficulties in different cities of the United States

    Get PDF
    The aim of this work is to exploit the large-scale analysis capabilities of the innovative Google Earth Engine platform in order to investigate the temporal variations of the Urban Heat Island phenomenon as a whole. A intuitive methodology implementing a large-scale correlation analysis between the Land Surface Temperature and Land Cover alterations was thus developed. The results obtained for the Phoenix MA are promising and show how the urbanization heavily affects the magnitude of the UHI effects with significant increases in LST. The proposed methodology is therefore able to efficiently monitor the UHI phenomenon

    Distribución espacial de leguminosas en relación con el arbolado

    Get PDF
    A study was made of tree canopy influence on spatial distribution of leguminosae species and some soil variables in grassland communities. Besides the differentiation according to the tree species, it is possible to establish groups of samples according to their distance frorn the tree trunk. The greatest influence of canopy on vegetation and soil variables has been detected in the samples taken on the northern side of the trees.Se estudia la incidencia del arbolado sobre la distribución espacial de especies pertenecientes a la familia de las leguminosas y sobre algunas variables edáficas, en comunidades de pastizal adehesado. Aparte de la diferenciación atribuible a la especie arbórea, en todos los casos es posible el establecimiento de grupos de acuerdo con la distancia al tronco. La mayor influencia del arbolado se detecta en orientación norte, tanto en lo que se refiere a la vegetación como a las variables edíficas

    Topology by dissipation

    Full text link
    Topological states of fermionic matter can be induced by means of a suitably engineered dissipative dynamics. Dissipation then does not occur as a perturbation, but rather as the main resource for many-body dynamics, providing a targeted cooling into a topological phase starting from an arbitrary initial state. We explore the concept of topological order in this setting, developing and applying a general theoretical framework based on the system density matrix which replaces the wave function appropriate for the discussion of Hamiltonian ground-state physics. We identify key analogies and differences to the more conventional Hamiltonian scenario. Differences mainly arise from the fact that the properties of the spectrum and of the state of the system are not as tightly related as in a Hamiltonian context. We provide a symmetry-based topological classification of bulk steady states and identify the classes that are achievable by means of quasi-local dissipative processes driving into superfluid paired states. We also explore the fate of the bulk-edge correspondence in the dissipative setting, and demonstrate the emergence of Majorana edge modes. We illustrate our findings in one- and two-dimensional models that are experimentally realistic in the context of cold atoms.Comment: 61 pages, 8 figure

    Searching for compact radio sources associated to UCHII regions

    Full text link
    Ultra-Compact (UC)HII regions represent a very early stage of massive star formation whose structure and evolution are not yet fully understood. Interferometric observations in recent years show that some UCHII regions have associated compact sources of uncertain nature. Based on this, we carried out VLA 1.3 cm observations in the A configuration of selected UCHII regions in order to report additional cases of compact sources embedded in UCHII regions. From the observations, we find 13 compact sources associated to 9 UCHII regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that probably are deeply embedded in the dense ionized gas of the UCHII region. These sources are being photo-evaporated by the exciting star of the region and will last for 104−105^4-10^5 yr. They may play a crucial role in the evolution of the UCHII region as the photo-evaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem for these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photo-evaporating objects such as those of the first type but with significantly lower mass depletion rates. The rest of sources of this second type appear unresolved and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.Comment: 33 pages, 6 figures, 4 tables. Accepted for publication in Ap

    Engineering entanglement for metrology with rotating matter waves

    Get PDF
    Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation
    • …
    corecore