6 research outputs found
Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology
"Back-of-the-envelope" or "rule-of-thumb" calculations involving rough
estimates of quantities play a central scientific role in developing intuition
about the structure and behaviour of physical systems, for example in so-called
`Fermi problems' in the physical sciences. Such calculations can be used to
powerfully and quantitatively reason about biological systems, particularly at
the interface between physics and biology. However, substantial uncertainties
are often associated with values in cell biology, and performing calculations
without taking this uncertainty into account may limit the extent to which
results can be interpreted for a given problem. We present a means to
facilitate such calculations where uncertainties are explicitly tracked through
the line of reasoning, and introduce a `probabilistic calculator' called
Caladis, a web tool freely available at www.caladis.org, designed to perform
this tracking. This approach allows users to perform more statistically robust
calculations in cell biology despite having uncertain values, and to identify
which quantities need to be measured more precisely in order to make confident
statements, facilitating efficient experimental design. We illustrate the use
of our tool for tracking uncertainty in several example biological
calculations, showing that the results yield powerful and interpretable
statistics on the quantities of interest. We also demonstrate that the outcomes
of calculations may differ from point estimates when uncertainty is accurately
tracked. An integral link between Caladis and the Bionumbers repository of
biological quantities further facilitates the straightforward location,
selection, and use of a wealth of experimental data in cell biological
calculations.Comment: 8 pages, 3 figure
Temporal and spatial analysis of the 2014-2015 Ebola virus outbreak in West Africa
West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.status: publishe