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Computational Tools
Explicit Tracking of Uncertainty Increases the Power of Quantitative
Rule-of-Thumb Reasoning in Cell Biology
Iain G. Johnston,1 Benjamin C. Rickett,1 and Nick S. Jones1,*
1Department of Mathematics, Imperial College London, London, United Kingdom
ABSTRACT Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central sci-
entific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi
problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological
systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated
with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to
which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncer-
tainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a
free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calcula-
tions in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely
to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncer-
tainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the
quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncer-
tainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities
further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological
calculations.
INTRODUCTION
Rule-of-thumb, or back-of-the-envelope, calculations are of
great utility across the sciences, allowing estimates of quan-
tities to be obtained while gleaning intuition about the
important numerical features of a system. In physics, the
paradigm of the Fermi problem has been used for decades
to develop intuition about the structure and behavior of sys-
tems by employing reasonable approximations, order-of-
magnitude estimates, dimensional analysis, and clearly
stated assumptions. The use of the napkin (often more
readily available than an envelope in modern cafés and con-
ferences) as a medium to perform rough calculations and
gain understanding of a system given limited experimental
information is well known in the physical sciences and
has recently gained popular attention (1). Recent mathemat-
ical approaches to complex problems in wider scientific
fields have employed these back-of-the-envelope ap-
proaches, including bioestimates in physical biology (2)
and cell biology (3) and the popular ‘‘street-fighting mathe-
matics’’ for use throughout the sciences (4).

However, these calculations currently do not have as cen-
tral a role in cell biology as they do in the physical sciences,
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despite receiving substantial recent attention as powerful
tools for reasoning in quantitative biology (5,6), and being
facilitated by quantitative resources like the excellent
BioNumbers database (7). One reason for this absence is
that many of the quantities involved in cell biology are
either intrinsically highly variable or have large measure-
ment errors. Calculations that do not take these uncertainties
into account (yielding a mean value estimate without asso-
ciated uncertainties), although powerful in their own right,
may represent only part of the story (Fig. 1 A).

In some back-of-the-envelope circumstances, accuracy
may be maintained without the explicit tracking of uncer-
tainties. An example of this is in calculations involving
the multiplication of several terms, each of which may be
reasonably assumed to be normally distributed with similar
coefficients of variation. In such a calculation, the logarithm
of the error in an estimate scales with the square-root of the
number of terms in the calculation. However, quantitative
cell biology often involves distributions that cannot be
assumed to be normally distributed, as well as calculations
more general than simple multiplications of terms. In these
circumstances, where individual uncertainties can differ be-
tween terms and may be over many orders of magnitude, the
risk of inaccuracy associated with calculations without un-
certainty is increased. If uncertainties are included in such
calculations, it is often through standard propagation-of-un-
certainty approaches (8), which typically track a limited
http://dx.doi.org/10.1016/j.bpj.2014.08.040
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FIGURE 1 An example back-of-the-envelope calculation. Current tech-

nology is unable to measure the number of protons in a cell, so we esti-

mate this number from measured quantities. (A) An estimate without

uncertainty, combining rough estimates of pH and cell volume to obtain

a guess for the number of protons. In this example, mean values are

chosen to match the means of known measurements, but no associated

uncertainty is analyzed. (B) An estimate using CALADIS to explicitly

account for uncertainties in the measured quantities and reporting explan-

atory statistics about the final quantity, using uniform distributions to

represent the uncertainty in the variables involved. Other representative

distributions are possible and can be analyzed using our approach (see

Results). (C) CALADIS also finds that in this example calculation,

more of the final uncertainty arises from uncertainty in cell volume than

pH: refining volume estimates is slightly preferred as the optimal experi-

mental strategy to lower overall uncertainty. To see this figure in color,

go online.
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number of distribution moments and can thereby fail to
accurately represent the distribution of the final result for
nonnormal distributions. Of course, the process of perform-
ing rough calculations and obtaining estimated answers is
immensely valuable in its own right, for the reasons dis-
cussed above. To complement this powerful process of
Fermi reasoning in biology, we here suggest a complemen-
tary form of envelope reasoning, allowing for calculations
including uncertain quantities.
METHODS

Explicitly tracking uncertainty in cell biological
calculations

We propose an approach to biological rule-of-thumb calculations involving

uncertain quantities that does not solely rely on point estimates of quantities

of interest. Instead, our approach involves treating every uncertain quantity

in a rule of thumb calculation as a probability distribution describing this

uncertainty. The following iterative process is then performed: in each iter-

ation, a sampled value is taken from each distribution of interest in the calcu-

lation. The value of the complete calculation is computed given this set of

samples. This process is iterated many times to build up a distribution of

values describing the output of the calculation. This output distribution

then provides an interpretable and statistically rigorous answer to the rule-

of-thumb question. We present this approach as a complement to, and not

a substitute for, the valuable process of Fermi estimation, and stress again

the value of ‘‘just having a go with the numbers’’.

We emphasize that our approach, calculation of quantities using samples

from distributions rather than point estimates, can be used to obtain inter-

pretable results in cases where we do not have access to the full set of orig-

inal measurements. This situation is likely to apply, for example, when

using summarized results from previous independent experiments. In this

case, our method can be viewed as a generalization of the resampling ap-

proaches that could be used if we had full access to the original data,

such as bootstrapping or jackknifing (9).

In addition to adding statistical power to rule-of-thumb questions in cell

biology, this approach can also be used to facilitate efficient design of

experiments to reduce uncertainty in a given quantity. In the picture of

calculations performed using probability distributions, this goal can be

accomplished using a simple variant of a sensitivity analysis approach.

Consider artificially decreasing the variance of each distribution in a calcu-

lation one-by-one. Decreasing the variance of each individual distribution

will lead to a decrease in the overall variance of the output distribution,

and the magnitudes of these induced overall decreases can be recorded.

The quantity with the most power to decrease overall variance in the calcu-

lation output can then be identified, and its value further refined through

experiment. Conceptually, this approach resembles performing a sensitivity

analysis on the variance of the solution distribution with respect to the var-

iances of individual input distributions.

An important point to consider when attempting to quantify uncertainty in

scientific calculations is the source and meaning of the word ‘‘uncertainty’’.

A degree of measurement error may be associated with an experimental pro-

tocol, causing uncertainty in the resulting value due to imprecision. Alterna-

tively, a given physical or biological quantitymay exhibit genuine variability

independent of the measurement process, in that its value fluctuates or

changes with time and/or other controlling factors. The degree to which cal-

culations involving uncertain quantities are interpretable is contingent on the

types of uncertainty involved (see Discussion).
CALADIS: a probabilistic calculator for biology

We introduce a web-based calculator called CALADIS (from ‘‘calculate a

distribution’’), available for free use (and free source code download) at

www.caladis.org. CALADIS, in addition to computing with constant quan-

tities and standard mathematical operators and functions, naturally incorpo-

rates probability distributions as fundamental calculation elements,

yielding as its output a probability distribution over the final answer. As

described above, this probabilistic calculation approach allows uncer-

tainties to be tracked throughout a calculation, providing a wealth of output

data and allowing a complete view of the statistical details of the output of a

probabilistic calculation (Fig. 1 B) and further information about the sour-

ces of uncertainty (Fig. 1 C; see later).

We underline that our web tool requires no knowledge of computer pro-

gramming and no access to mathematical software tools, and, in addition to
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functioning on desktop and laptop browsers, is compatible with a range of

hand-held devices. Our aim in designing this tool is to facilitate fast and

easy calculations involving uncertain biological quantities for users

including those who lack the background or software to produce their

own machinery for performing such calculations. The ability of our site

to function on mobile devices makes it a plausible substitute for the well-

known napkin over coffee or a conference dinner, facilitating informal

but rigorous rough estimates of quantities as new ideas emerge.

CALADIS presents the user with a field (Fig. 2 A) to input calcula-

tion expressions, which may involve probability distributions identified

with a prepended # symbol, where # functions as a sigil denoting a distribu-

tion, e.g.,

4=3 � pi � # cellRadiusDist ^ 3:

For every probability distribution found in the input expression, CALADIS

prompts the user to choose a distribution type, and appropriate parameters

to describe that distribution (for example, perhaps specifying that

# cellRadiusDist is a uniform distribution between 1 and 1.5 mm), or, in

the case of BioNumbers (see below), automatically populates the distribu-

tion details with the appropriate parameters (Fig. 2 B). Users may also use a

built-in browser to input distributions corresponding to recorded quantities

from biological experiments (Fig. 2 C; see BioNumbers below). The user

may then click ‘‘Calculate’’, whereupon CALADIS computes a probability

distribution describing the final answer using the above approach, sampling

many times from each distribution the user entered to build up a set of sam-
FIGURE 2 Elements of CALADIS interface. (A) The expression input box:

distributions (for example, perhaps specifying that a certain distribution is uniform

distribution in the input expression must then be characterized, either through th

matic recognition of a BioNumber. (C) The BioNumbers Browser allows the iden

(D) The resultant distribution for the calculation is then displayed, along with

assessing the sensitivity of overall variance with respect to the variance of individ

ton number calculation discussed in the Results. To see this figure in color, go
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ples from the resultant distribution, which is then displayed graphically

(Fig. 2 D). This interface includes a tool to estimate the probability mass

between two given values, user-controlled display of the probability of

lying in each bin, summary statistics of the distribution (Fig. 2 E), results

from the optional standard deviation (SD) analysis (Fig. 2 F), and a URL

that serves as a permanent link to that calculation. This collection of output

statistics and graphics allows a complete overview of the probabilistic result

of the user’s calculation.

CALADIS also facilitates the aforementioned efficient design of ex-

perimental strategies, through consideration of the contributions of

different quantities to the overall uncertainty in a calculation. The user

has the option of performing a standard deviation analysis for common

types of input distribution in the web interface. In this analysis, the SD

of each input distribution of this type is artificially reduced by 10%,

and the resulting effect on the SD and interquartile range of the resultant

distribution is recorded (Fig. 2 F). Intuition about the input variable with

the most power to refine the overall output estimate can then be gained

straightforwardly.
BioNumbers

We have embedded the data provided by the BioNumbers repository (7)

within CALADIS. BioNumbers contains a huge range of biological mea-

surements, spanning scales from microscopic chemical reaction rates

and cellular concentrations to ecosystem- and planetwide statistics of
a user enters a calculation here, providing any required information about

between 0 and 1, or normal with mean 1 and SD 0.1). (B) Each probability

e user’s entry of appropriate parameters, or (as depicted) through the auto-

tification, selection, and inclusion of values from the BioNumbers database.

summary statistics of the distribution (E) and (optionally) SD analysis (F)

ual elements. This illustration involves, as an example calculation, the pro-

online.
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biological populations. Our link to the database allows us to perform

powerful rule-of-thumb biophysical and cell-biological calculations with

BioNumbers (5) while tracking uncertainties to estimate the ranges of

the final answer.

Within our web tool, the BioNumbers database is parsed to obtain, for

each BioNumber, a corresponding probability distribution, units, and a

URL to the source data. Probability distributions are assigned based on

the format of the source data and according to a user-defined protocol

(see the Supporting Material). The units of each value are automatically ob-

tained from the database. Users may then use a variety of approaches to

identify and select BioNumbers for use in a probabilistic calculation, and

the corresponding probability distributions are automatically included as

calculation elements (see the Supporting Material).
RESULTS

Problems with reasoning with mean values in
nonlinear contexts

We first illustrate how reasoning using only mean estimates
may lead to incorrect results in calculations. Consider two
measured quantities X and Y, perhaps corresponding to the
abundance of two different types of entity in a population.
We are interested in the proportion of X in the population
P ¼ X/(X þ Y).

Say we have the information that the measured quanti-
ties follow log-normal distributions, with X having mean
mX ¼ 0.1 and SD (of the log-normal distribution itself,
as opposed to the underlying normal distribution) sX ¼
0.1, and Y having mean mY ¼ 0.9 and SD sF ¼ 0.9.
In this artificial example, estimating the expected propor-
tion of X in the population from the means alone would
give

bP ¼ mX

�ðmX þ mYÞ ¼ 0:1:

However, accurately tracking uncertainty in this calculation

produces the counterintuitive result that EðPÞ x 0.144,
rather more than the population proportion estimated from
mean values (Fig. 3 A).

This illustration contrasts with the cases where a calcula-
tion is straightforwardly additively or multiplicatively sepa-
rable. In such cases, the fact that functions f(X) and g(X) of
independent random variables X and Y are themselves inde-
pendent leads to the results Eðf ðXÞgðYÞÞ ¼ Eðf ðXÞÞEðgðYÞÞ
and Eðf ðXÞ þ gðYÞÞ ¼ Eðf ðXÞÞ þ EðgðYÞÞ; implying that
calculations based on the individual means of X and Y
will accurately estimate the overall mean. The error in
the mean-based estimate bP in our example arises from
the structure of the expression used to calculate the
population proportion: the fraction cannot be separated
into independent functions of X and Y. Generally in such
inseparable cases, calculations based solely on mean
values may not provide correct estimators. In such cases,
explicitly tracking uncertainty not only provides a powerful
characterization of the uncertainty in the final answer but
also guarantees that such errors in the mean outcome are
not made.
Next, we give two example calculations from the
BioNumber of theMonth website (3) to illustrate the process
of explicitly tracking uncertainties in cell biological calcula-
tions with BioNumbers. The details of the BioNumber distri-
butions used are shown in the Supporting Material.
The number of hydrogen ions in a cell

Given measurement of the pH and volume Vof a system, the
number of hydrogen ions in the system can be deduced as n¼
10�pHNAV, where NAx 6� 10�23 is Avogadro’s number. In
the December 2011 entry of Milo (3), measurements of pH
and cell volume are used to estimate that an Escherichia
coli cell contains ~60 hydrogen ions. Using CALADIS’
BioNumbers browser to search for ‘‘cell volume’’ and ‘‘cyto-
plasm pH’’ identifies BioNumbers 100003 (E. coli cell vol-
ume) and 106518 (E. coli pH). These values appear in
BioNumbers as (100003) 0.1–3.5 mm3, interpreted as U(0.1,
3.5) mm3; and (106518) 7.2–7.8, interpreted as U(7.2, 7.8).
It is possible to interpret these results in terms of different
probability distributions—a facility supported by CALADIS
(see the SupportingMaterial). For example, the quantity 0.1–
3.5 mm3 could be interpreted as a log-normal distribution
with 0.1 mm3 and 3.5 mm3 as51s points of the distribution.
However, in this specific example, we use a uniform distribu-
tion, because the corresponding log-normal distribution
exhibits extremely high variance with a range over more
than an order of magnitude, which does not intuitively match
the expected distribution of cell sizes in a population. Addi-
tionally, analytic results for the distribution of exponentially
growing, dividing cells suggest a quadratic distribution that
bears a stronger resemblance to the uniform than the log-
normal picture (10). The ability to explore these different
interpretations, and quantitatively debate the properties of
each, are valuable scientific processes which our approach
facilitates.

We can automatically access these BioNumbers and
their associated uncertainties in CALADIS, then calcu-
late the above equation while tracking uncertainties (this
calculation forms the example used illustratively in
Fig. 1 B). We find that the resultant distribution (see
Fig. 3 B) easily spans an order of magnitude, with 14%
of the density < 10 protons and 3% > 100 protons (statis-
tics straightforwardly found using CALADIS’ interface).
Use of SD analysis suggests that more of this uncertainty
originates from the spread of cell volumes. We now have
a mean estimate at ~37 protons and a full characterization
of the uncertainty associated with this answer, allowing a
quantified degree of confidence to be associated with our
reasoning.
Diffusion times in cells

In the March 2010 entry of Milo (3), the characteristic time-
scales for diffusion through cells of various sizes are
Biophysical Journal 107(11) 2612–2617
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FIGURE 3 Point estimates and biological distri-

butions. (A) The distribution resulting from the

illustrative X/(X þ Y) calculation in the text. The

value obtained by considering mean estimates

alone differs from the mean of the true distribution,

which is heavily skewed, highlighting the impor-

tance of explicitly tracking uncertainty. (B and C)

Estimates, using data from biological experiments

via the BioNumbers database, and tracking uncer-

tainties for (B) number of protons in an E. coli

cell and (C) time for GFP to diffuse 1 mm in

E. coli. All distributions are direct outputs from

CALADIS. To see this figure in color, go online.
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explored, using the expression t ¼ x2/6D, where x is the
length scale of diffusion and D is the diffusion constant of
the species of interest. Milo (3) uses a rough estimate
of the diffusion constant for GFP in E. coli and order-of-
magnitude reasoning to obtain an estimate of 10 ms to tra-
verse a root mean square distance of 1 mm.

Using CALADIS’ BioNumbers browser to search for
‘‘diffusion rate’’ identifies BioNumber 100193 (diffusion
rate in E. coli), recorded as 7.7 5 2.5 mm2 s�1 and inter-
preted as N(7.7, 2.5) m2 s�1. We follow the calculation in
Milo (3) by including this BioNumber in the above equation,
using x¼ 1 mm, and performing the probabilistic calculation
of t in CALADIS, tracking uncertainties.We observe that the
resultant distribution (see Fig. 3 C) is highly skewed, with an
apparent coefficient of variation (the ratio of the SD to the
mean, illustrating the spread of the distribution) of ~2.4.
This example, where a probability distribution appears in
the denominator of an expression for a quantity of interest,
illustrates how the resultant uncertainty can behave unintui-
tively when variables are combined even in relatively simple
ways. Calculation of a resultant distribution provides a more
robust method in these circumstances than traditional prop-
agation-of-uncertainty approaches, and construction of a
full probability distribution for the output of a calculation
allows interpretation of details like skewness that are missed
by a simple estimate of the SD alone.
DISCUSSION

We have described an approach for performing rule-of-
thumb calculations in biophysics and cell biology while
incorporating the considerable uncertainty often involved
in such biological contexts. This approach, which does not
Biophysical Journal 107(11) 2612–2617
rely solely on point estimates of relevant quantities, allows
the treatment and interpretation of the uncertainty involved
in such calculations, increasing their trustworthiness and
their power to assist intuitive reasoning. In addition, it
may be used to optimize experimental design, by helping
to identify measurements with the greatest power to refine
knowledge of the overall quantity of interest.

To facilitate the straightforward use of this approach, both
at a computer and on mobile devices, we have introduced
CALADIS, an online tool for performing calculations
involving probability distributions, available for free use
and with its source code open and available to download.
CALADIS has a particular link to rule-of-thumb calcula-
tions with BioNumbers in cell biology, and we have illus-
trated its use in deriving distributions of quantities of
biophysical and cell biological interest. In employing these
calculations in a scientific context, it is important to note
that tracking the uncertainties in calculations is only useful
if the underlying model is appropriately trusted: hygienic
treatment of errors is a separate consideration from picking
the right model for the world. It is unlikely that the model
probability distributions employed in our approach (and
many other analyses) represent the perfect description of a
quantity arising in the real world; however, we hope that
our approach, with the broad range of distributions sup-
ported by CALADIS, provides a means of reasonably esti-
mating a wide range of real quantities. As we highlight
above, the discussion of appropriate models for uncertainty,
and their quick quantitative comparison, is a scientifically
beneficial feature facilitated by our approach.

Back-of-the-envelope calculations (though used
throughout history) have become increasingly popular
recently as tools for developing quantitative reasoning and
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intuition (1,4,5). Despite this increase in popularity, their
use is not yet as prevalent in biology as in the physical sci-
ences. We hope that this tool provides support for, and may
increase trust in, the use of back-of-the-envelope calcula-
tions in quantitative cell biology (and across the biosci-
ences) by exposing the role of uncertainties. We have
shown that in some cases (for example, in calculating pro-
portions), failing to track uncertainties can lead to rough
guesses that do not represent the full truth of the calculation.

In our work with biological calculations, we have found
that CALADIS plays a useful role in quality control for
rule-of-thumb reasoning: after having made an approximate
estimate on a real napkin, it is helpful to check whether the
biological question at hand remains adequately answered if
variability/imprecision is appropriately accommodated. We
further note the reverse possibility: rather than serving as a
sanity check for our envelope calculations, CALADIS can
help create optimismabout our estimates. For example, in set-
tings where the uncertainty of some calculation elements is
known to be very substantial, it might be the case that the final
distribution of the estimated quantity is, in fact, sufficiently
constrained for scientific advance. As discussed, an uncer-
tainty appended to an estimated quantity needs to be treated
with care (since it can depend on distribution choice) but it
can still serve as a partial certificate for the relevance of the
estimate. We suggest that researchers may present links to
their calculations within CALADIS, so that readers are then
free to use their prior beliefs to modify the component distri-
butions (if, for example, a reader is less confident about a var-
iable than the author) to see whether the conclusions are still
robust.

Asmentioned previously, the interpretation of calculations
tracking uncertainty is contingent on the source of the uncer-
tainty in the elements of the calculation, which may arise
from imprecision (for example, measurement errors associ-
atedwith an experimental protocol) or variability (the natural
fluctuations intrinsic to a system of interest). Care must be
taken in the interpretation of the resultant distribution de-
pending on the sources of uncertainty in the calculation.
For example, consider a quantityXwhich is subject to natural
variability, stationary but fluctuating with time, and which
has been characterized by a distribution involving a finite
number N of measurements of X at different times. If we
are interested in the behavior of X over an infinitesimally
small timewindow, it makes sense to draw from this distribu-
tion of X, since this distribution represents plausible states of
the system. If we are interested in the time-averaged behavior
of X, we may instead consider the distribution of bEðXÞ, an es-
timate of the mean of X. EðXÞ is a single number about which
we are uncertain: the distribution of bEðXÞ derived from our
measurements will have a finite width (the standard error
on the mean, dependent on N), corresponding to imprecision
rather than natural variability. Mixing uncertainties due to
imprecision with those due to variability may lead to results
that are not trivial to interpret. We underline the importance
of transparency in the meaning of a probabilistic calculation
to avoid misinterpretation—in the above example, it should
be explicitly stated whether a calculation involves (variable)
single instances of a measurement (X) or (imprecise) time-
averaged behavior ðEðXÞÞ.

The process of sampling from distributions describing in-
dividual quantities, performing a calculation using these
samples, and building a final distribution is akin to several
methodologies of use in Bayesian statistics (11). The differ-
ence between our approach and Bayesian sampling ap-
proaches is that after establishing our distributions we
condition on no further data, instead assuming that the indi-
vidual distributions (which could be pictured as priors)
already contain all information on the likelihood of individ-
ual values. In this sense, the Bayesian interpretation of our
approach is not as a method for extracting posteriors from
priors given data, but is instead a method for performing cal-
culations with priors without new data, thus constructing
new prior distributions over more complicated quantities.
SUPPORTING MATERIAL

Additional supplemental information are available at http://www.biophysj.
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