434 research outputs found

    Physical Properties and Baryonic Content of Low-Redshift Intergalactic Ly-alpha and O VI Absorption Systems: The PG1116+215 Sight Line

    Full text link
    We present HST and FUSE observations of the intergalactic absorption toward PG1116+215 in the 900-3000 A spectral region. We detect 25 Ly-alpha absorbers at rest-frame equivalent widths W_r > 30 mA, yielding (dN/dz)_Ly-alpha = 154+/-18 over an unblocked redshift path of 0.162. Two additional weak Ly-alpha absorbers with W_r ~ 15-20 mA are also present. Eight of the Ly-alpha absorbers have large line widths (b > 40 km/sec). The detection of narrow OVI in the broad Ly-alpha absorber at z=0.06244 supports the idea that the Ly-alpha profile is thermally broadened in gas with T > 10^5 K. We find dN/dz ~ 50 for broad Ly-alpha absorbers with W_r > 30 mA and b > 40 km/sec. If the broad Ly-alpha lines are dominated by thermal broadening in hot gas, the amount of baryonic material in these absorbers is enormous, perhaps as much as half the baryonic mass in the low-redshift universe. We detect OVI absorption in several of the Ly-alpha clouds along the sight line. Two detections at z=0.13847 and z=0.16548 are confirmed by the presence of other ions at these redshifts, while the detections at z=0.04125, 0.05895, 0.05928, and 0.06244 are based upon the Ly-alpha and OVI detections alone. The information available for 13 low-redshift OVI absorbers with W_r > 50 mA along 5 sight lines yields (dN/dz)_OVI ~ 14 and Omega_b(OVI) > 0.0027/h_75, assuming a metallicity of 0.1 solar and an OVI ionization fraction < 0.2. The properties and prevalence of low-redshift OVI absorbers suggest that they too may be a substantial baryon repository, perhaps containing as much mass as stars and gas inside galaxies. The redshifts of the OVI absorbers are highly correlated with the redshifts of galaxies along the sight line, though few of the absorbers lie closer than 600/h_75 kpc to any single galaxy. [abbreviated]Comment: 99 pages, 30 figures, aastex format, ApJS in pres

    Phosphocholine-Modified Lipooligosaccharides of Haemophilus influenzae Inhibit ATP-Induced IL-1beta Release by Pulmonary Epithelial Cells

    Get PDF
    Phosphocholine-modified bacterial cell wall components are virulence factors enabling immune evasion and permanent colonization of the mammalian host, by mechanisms that are poorly understood. Recently, we demonstrated that free phosphocholine (PC) and PC-modified lipooligosaccharides (PC-LOS) from Haemophilus influenzae, an opportunistic pathogen of the upper and lower airways, function as unconventional nicotinic agonists and efficiently inhibit the ATP-induced release of monocytic IL-1beta. We hypothesize that H. influenzae PC-LOS exert similar effects on pulmonary epithelial cells and on the complex lung tissue. The human lung carcinoma-derived epithelial cell lines A549 and Calu-3 were primed with lipopolysaccharide from Escherichia coli followed by stimulation with ATP in the presence or absence of PC or PC-LOS or LOS devoid of PC. The involvement of nicotinic acetylcholine receptors was tested using specific antagonists. We demonstrate that PC and PC-LOS efficiently inhibit ATP-mediated IL-1beta release by A549 and Calu-3 cells via nicotinic acetylcholine receptors containing subunits alpha7, alpha9, and/or alpha10. Primed precision-cut lung slices behaved similarly. We conclude that H. influenzae hijacked an endogenous anti-inflammatory cholinergic control mechanism of the lung to evade innate immune responses of the host. These findings may pave the way towards a host-centered antibiotic treatment of chronic airway infections with H. influenzae

    FUSE and STIS Observations of the Warm-Hot Intergalactic Medium towards PG1259+593

    Full text link
    We use FUSE and STIS spectra to study intergalactic absorption towards the quasar PG1259+593 (z=0.478). We identify 135 intergalactic absorption lines with equivalent widths >10mA, tracing 78 absorption components in 72 Ly alpha/beta absorption-line systems. We concentrate on the distribution and physical properties of the WHIM as sampled by OVI and intrinsically broad Ly alpha lines. The number of intervening OVI absorbers for equivalent widths W>24 mA is 3-6 over an unobscured redshift path of dz=0.368. This implies a number density of OVI systems, dN/dz, of ~8-16 along this sight line. This range is consistent with estimates from other sight lines, supporting the idea that intervening intergalactic OVI absorbers contain an substantial fraction of the baryonic mass in the low-redshift Universe. We identify a number of broad Ly alpha absorbers with large Doppler parameters (b~40-200 km/s) and low column densities (N(HI)<10^14 cm^-2). For pure thermal broadening, these widths correspond to temperatures of ~1x10^5 to 3x10^6 K. While these broad absorbers could be caused by blends of multiple, unresolved lines, continuum undulations, or by kinematic flows and Hubble broadening, we consider the possibility that some of these features are single-component, thermally broadened Ly alpha lines. These systems could represent WHIM absorbers that are too weak, too metal-poor, and/or too hot to be detected in OVI. If so, their widths and their frequency in the PG1259+593 spectrum imply that these absorbers trace an even larger fraction of the baryons in the low-redshift Universe than the OVI absorbing systems (abridged version).Comment: 71 pages, 25 figures; accepted for publication in ApJ

    Detection of Dust in High-Velocity Cloud Complex C -- Enriched Gas Accreting onto the Milky Way

    Full text link
    We present the detection of dust depletion in Complex C, a massive, infalling, low-metallicity high-velocity cloud in the northern Galactic hemisphere that traces the ongoing accretion of gas onto the Milky Way. We analyze a very high signal-to-noise HST/COS spectrum of AGN Mrk 817 formed by coadding 165 individual exposures taken under the AGN STORM 2 program, allowing us to determine dust-depletion patterns in Complex C at unprecedented precision. By fitting Voigt components to the O I, S II, N I, Si II, Fe II, and Al II absorption and applying ionization corrections from customized Cloudy photoionization models, we find sub-solar elemental abundance ratios of [Fe/S]=-0.42+/-0.08, [Si/S]=-0.29+/-0.05, and [Al/S]=-0.53+/-0.08. These ratios indicate the depletion of Fe, Si, and Al into dust grains, since S is mostly undepleted. The detection of dust provides an important constraint on the origin of Complex C, as dust grains indicate the gas has been processed through galaxies, rather than being purely extragalactic. We also derive a low metallicity of Complex C of [S/H]=-0.51+/-0.16 (31% solar), confirming earlier results from this sightline. We discuss origin models that could explain the presence of dust in Complex C, including Galactic fountain models, tidal stripping from the Magellanic Clouds or other satellite galaxies, and precipitation of coronal gas onto dust-bearing ``seed" clouds.Comment: 8 pages, 3 figures, accepted for publication in ApJ Letters. This version has been updated with proof correction

    Designing Cathodes and Cathode Active Materials for Solid‐State Batteries

    Get PDF
    Solid-state batteries (SSBs) currently attract great attention as a potentially safe electrochemical high-energy storage concept. However, several issues still prevent SSBs from outperforming today\u27s lithium-ion batteries based on liquid electrolytes. One major challenge is related to the design of cathode active materials (CAMs) that are compatible with the superionic solid electrolytes (SEs) of interest. This perspective, gives a brief overview of the required properties and possible challenges for inorganic CAMs employed in SSBs, and describes state-of-the art solutions. In particular, the issue of tailoring CAMs is structured into challenges arising on the cathode-, particle-, and interface-level, related to microstructural, (chemo-)mechanical, and (electro-)chemical interplay of CAMs with SEs, and finally guidelines for future CAM development for SSBs are proposed

    A FUSE Survey of Molecular Hydrogen in Intermediate-Velocity Clouds in the Milky Way Halo

    Get PDF
    Far Ultraviolet Spectroscopic Explorer (FUSE) data is used to investigate the molecular hydrogen (H_2) content of intermediate-velocity clouds (IVCs) in the lower halo of the Milky Way. We analyze interstellar absorption towards 56 (mostly extragalactic) background sources to study H_2 absorption in the Lyman- and Werner bands in 61 IVC components at H I column densities >10^19 cm^-2. For data with good S/N (~9 per resolution element and higher), H_2 in IVC gas is convincingly detected in 14 cases at column densities varying between ~10^14 and ~10^17 cm^-2. We find an additional 17 possible H_2 detections in IVCs in FUSE spectra with lower S/N. The molecular hydrogen fractions, f, vary between 10^-6 and 10^-3, implying a dense, mostly neutral gas phase that is probably related to the Cold Neutral Medium (CNM) in these clouds. If the H_2 stays in formation-dissociation equlibrium, the CNM in these clouds can be characterized by compact (D~0.1 pc) filaments with volume densities on the order of n_H~30 cm^-3. The relatively high detection rate of H_2 in IVC gas implies that the CNM in these clouds is ubiquitous. More dense regions with much higher molecular fractions may exist, but it would be difficult to detect them in absorption because of their small size.Comment: 36 pages, 11 figures; accepted for publication in Ap

    The FUSE Spectrum of PG0804+761: A Study of Atomic and MolecularGas in the Lower Galactic Halo and Beyond

    Full text link
    We present an analysis of interstellar and intergalactic absorption lines in the FUSE spectrum of the low-redshift quasar PG0804+761 (z=0.100) at intermediate resolution (FWHM=25 km/s) in the direction l=138.3, b=31.0. With a good signal-to-noise ratio and the presence of several interesting Galactic and extragalactic absorption components along the sight line, this spectrum provides a good opportunity to demonstrate the ability of FUSE to do both interstellar and extragalactic science. Although the spectrum of PG0804+761 is dominated by strong absorption from local Galactic gas, we concentrate our study on absorption by molecular hydrogen and neutral neutral and ionized metals related to an intermediate-velocity cloud in the lower Galactic halo at -55 km/s, and on absorption from OVI extended to negative velocities. In the IVC, weak molecular hydrogen absorption is found in 5 lines for rotational levels 0 and 1, leading to a total H_2 column density of log N = 14.71(+-0.30). We derive an OI gas-phase abundance for the IVC of 1.03(+0.71-0.42) solar. Absorption by OVI is found at velocities as negative as -110 km/s, but no absorption from any species is found at velocities of -180 km/ where absorption from the nearby high-velocity Complex A would be expected. We suggest that the extended OVI absorption traces hot gas above the Perseus spiral arm. Finally, we find intergalactic absorption by an intervening HI Ly betax absorber at z=0.019 and absorption by HI, CIII and OVI in an associated system at z=0.102. No intervening OVI absorbers are seen in the spectrum of PG0804+761.Comment: 27 pages, 6 figures; accepted for publication in Ap

    Cloud-by-cloud Multiphase Investigation of the Circumgalactic Medium of Low-redshift Galaxies

    Full text link
    The pervasive presence of warm gas in galaxy halos suggests that the circumgalactic medium (CGM) is multiphase in its ionization structure and complex in its kinematics. Some recent state-of-the-art cosmological galaxy simulations predict an azimuthal dependence of CGM metallicities. We investigate the presence of such a trend by analyzing the distribution of gas properties in the CGM around 47 z<z < 0.7 galaxies from the Multiphase Galaxy Halos Survey determined using a cloud-by-cloud, multiphase, ionization modelling approach. We identify three distinct populations of absorbers: cool clouds (T∌T \sim 104.1^{4.1} K) in photoionization equilibrium, warm-hot collisionally ionized clouds (T∌T \sim 104.5−5^{4.5-5} K) affected by time-dependent photoionization, and hotter clouds (T∌T \sim 105.4−6^{5.4-6} K) with broad OVI and Lya absorption consistent with collisional ionization. We find that fragmentation can play a role in the origin of cool clouds, that warm-hot clouds are out of equilibrium due to rapid cooling, and that hotter clouds are representative of virialized halo gas in all but the lowest mass galaxies. The metallicities of clouds do not depend on the azimuthal angle or other galaxy properties for any of these populations. At face value, this disagrees with the simplistic model of the CGM with bipolar outflows and cold-mode planar accretion. However, the number of clouds per sightline is significantly larger close to the minor and major axes. This implies that the processes of outflows and accretion are contributing to these CGM cloud populations, and our sightlines are probing gas of mixed origins at all azimuthal angles in these low redshift galaxies.Comment: Accepted for publication in MNRA

    Science-rich Sites for In Situ Resource Utilization Characterization and End-to-end Demonstration Missions

    Get PDF
    Within the European Space Agency’s “Commercial In Situ Resource Utilization (ISRU) Demonstration Mission Preparation Phase,” we examined two types of lunar sites in preparation for an ISRU demonstration mission. First, we considered poorly characterized potential resource sites. For these so-called characterization sites, precursor missions would investigate the material properties and address strategic knowledge gaps for their use as ISRU feedstock. Regions of interest for characterization missions include the Aristarchus plateau, Montes Harbinger/Rimae Prinz, Sulpicius Gallus, and Rima Bode. Regional pyroclastic deposits at the Aristarchus plateau and adjacent Montes Harbinger/Rimae Prinz exhibit remotely sensed low-Ti, high-Fe2+ compositions. They differ from the high-Ti pyroclastics at Rima Bode and Sulpicius Gallus, which are similar to the pyroclastics northwest of the Taurus Littrow valley (Apollo 17 site). Thus, exploration of the Aristarchus plateau would allow investigation of previously uncharacterized materials, whereas Rima Bode or Sulpicius Gallus would allow comparison to Apollo 17 pyroclastics. Any of these sites would enable evaluation of reported H2O/OH in these deposits. Second, we examined a possible site for a direct ISRU demonstrator mission. For a stand-alone end-to-end (E2E) ISRU demonstrator, a fuller understanding of the physical and compositional characteristics of potential feedstock is required for mission risk reduction. In this case, locations near preexisting sites would allow extrapolation of ground truth to nearby deposits. Because a Ti-rich pyroclastic deposit appears advantageous from beneficiation and compositional perspectives, we examine an example E2E demo site northwest of the Taurus Littrow valley. Hydrogen and methane reduction, as well as the Fray–Farthing–Chen Cambridge process, could be tested there.BMWi, 50OW1504, MissionsunterstĂŒtzende Arbeiten und geologische Untersuchungen der lunaren OberflĂ€che mit Daten der Lunar Reconnaissance Orbiter Camera (LROC)BMWi, 50OW2001, MissionsunterstĂŒtzende und wissenschaftliche Arbeiten mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) und Vorbereitung zukĂŒnftiger Mondmissione
    • 

    corecore