170 research outputs found

    A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    Get PDF
    Citation: Faburay, B., Wilson, W. C., Gaudreault, N. N., Davis, A. S., Shivanna, V., Bawa, B., . . . Richt, J. A. (2016). A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Scientific Reports, 6, 12. doi:10.1038/srep27719Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n=5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts

    Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey

    Get PDF
    Citation: Yilmaz, H., Altan, E., Cizmecigil, U. Y., Gurel, A., Ozturk, G. Y., Bamac, O. E., . . . Turan, N. (2016). Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey. Avian Diseases, 60(3), 596-602. doi:10.1637/11346-120915-Reg.1The avian coronavirus infectious bronchitis virus (AvCoV-IBV) is recognized as an important global pathogen because new variants are a continuous threat to the poultry industry worldwide. This study investigates the genetic origin and diversity of AvCoV-IBV by analysis of the S1 sequence derived from 49 broiler flocks and 14 layer flocks in different regions of Turkey. AvCoV-IBV RNA was detected in 41 (83.6%) broiler flocks and nine (64.2%) of the layer flocks by TaqMan real-time RT-PCR. In addition, AvCoV-IBV RNA was detected in the tracheas 27/30 (90%), lungs 31/49 (62.2%), caecal tonsils 7/22 (31.8%), and kidneys 4/49 (8.1%) of broiler flocks examined. Pathologic lesions, hemorrhages, and mononuclear infiltrations were predominantly observed in tracheas and to a lesser extent in the lungs and a few in kidneys. A phylogenetic tree based on partial S1 sequences of the detected AvCoV-IBVs (including isolates) revealed that 1) viruses detected in five broiler flocks were similar to the IBV vaccines Ma5, H120, M41; 2) viruses detected in 24 broiler flocks were similar to those previously reported from Turkey and to Israel variant-2 strains; 3) viruses detected in seven layer flocks were different from those found in any of the broiler flocks but similar to viruses previously reported from Iran, India, and China (similar to Israel variant-1 and 4/91 serotypes); and 4) that the AVCoV-IBV, Israeli variant-2 strain, found to be circulating in Turkey appears to be undergoing molecular evolution. In conclusion, genetically different AvCoV-IBV strains, including vaccine-like strains, based on their partial S1 sequence, are circulating in broiler and layer chicken flocks in Turkey and the Israeli variant-2 strain is undergoing evolution. © 2016 American Association of Avian Pathologists

    Phylogeny and evolution of infectious bursal disease virus circulating in Turkish broiler flocks

    Get PDF
    The emergence of new infectious bursal disease virus (IBDV) variants can threaten poultry health and production all over the world causing significant economic losses. Therefore, this study was performed to determine IBDV molecular epidemilogy, VP2 gene variation, and corresponding pathological lesions in IBDV infected chickens in Turkey. For this, 1855 bursa of Fabricius samples were collected from 371 vaccinated broiler flocks. Atrophia and haemorrhages were seen in the bursa Fabricius of very virulent IBDV (vvIBDV) infected chickens. Partial VP2 gene was sequenced and phylogenetic, recombination, and evolutionary analyses were performed. 1548 (83.5%) out of 1855 of bursa of Fabricius samples were IBDV positive and 1525 of those could be sequenced. The recombination analysis did not detect occurrence of any recombination event among the Turkish strains. Among 1525 sequenced samples, 1380 of them were found to be classical strains. Among 1380 classical strains, 1317 were similar to IBDV 2512, 11 to Faragher 52/70, 40 to 228 E, and 12 to Lukert strain. Out of 1525 reverse transcriptase ploymerase chain reaction positive samples, 144 of them were found to be similar to vvIBDV-VP2 gene reported to GenBank previously. The phylogenetic tree performed on a broad sequence dataset demonstrated grouping of vvIBDV Turkish strains in three different clusters, including sequences collected also from Iraq and Kuwait (Cluster 1), Indian (Cluster 2), and a distinct Turkish-only cluster (Cluster 3). The evolutionary rate estimation on branches/clades including Turkish strain mirrored the expected one for RNA viruses and no significant differences were found among different considered branches. In conclusion, results of this study indicate that vvIBDV strains similar to those circulating in various countries in the Middle East are present and undergoing evolution in chickens from Turkish broiler flocks. This point needs to be taken into account in planning adequate control strategies

    Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    Get PDF
    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARSCoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn’t attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses

    Association of a Bovine Prion Gene Haplotype with Atypical BSE

    Get PDF
    Background: Atypical bovine spongiform encephalopathies (BSEs) are recently recognized prion diseases of cattle. Atypical BSEs are rare; approximately 30 cases have been identified worldwide. We tested prion gene (PRNP) haplotypes for an association with atypical BSE. Methodology/Principle Findings: Haplotype tagging polymorphisms that characterize PRNP haplotypes from the promoter region through the three prime untranslated region of exon 3 (25.2 kb) were used to determine PRNP haplotypes of six available atypical BSE cases from Canada, France and the United States. One or two copies of a distinct PRNP haplotype were identified in five of the six cases (p = 1.36×10-4, two-tailed Fisher’s exact test; CI95% 0.263–0.901, difference between proportions). The haplotype spans a portion of PRNP that includes part of intron 2, the entire coding region of exon 3 and part of the three prime untranslated region of exon 3 (13 kb). Conclusions/Significance: This result suggests that a genetic determinant in or near PRNP may influence susceptibility of cattle to atypical BSE

    A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA

    Get PDF
    The high rate of antigenic drift in seasonal influenza viruses necessitates frequent changes in vaccine composition. Recent seasonal H3 vaccines do not protect against swine-origin H3N2 variant (H3N2v) strains that recently have caused severe human infections. Here, we report a human VH1-69 gene-encoded monoclonal antibody (mAb) designated H3v-47 that exhibits potent cross-reactive neutralization activity against human and swine H3N2 viruses that circulated since 1989. The crystal structure and electron microscopy reconstruction of H3v-47 Fab with the H3N2v hemagglutinin (HA) identify a unique epitope spanning the vestigial esterase and receptor-binding subdomains that is distinct from that of any known neutralizing antibody for influenza A H3 viruses. MAb H3v-47 functions largely by blocking viral egress from infected cells. Interestingly, H3v-47 also engages Fcγ receptor and mediates antibody dependent cellular cytotoxicity (ADCC). This newly identified conserved epitope can be used in design of novel immunogens for development of broadly protective H3 vaccines

    Molecular, Biochemical and Genetic Characteristics of BSE in Canada

    Get PDF
    The epidemiology and possibly the etiology of bovine spongiform encephalopathy (BSE) have recently been recognized to be heterogeneous. In particular, three types [classical (C) and two atypical (H, L)] have been identified, largely on the basis of characteristics of the proteinase K (PK)-resistant core of the misfolded prion protein associated with the disease (PrPres). The present study was conducted to characterize the 17 Canadian BSE cases which occurred prior to November 2009 based on the molecular and biochemical properties of their PrPres, including immunoreactivity, molecular weight, glycoform profile and relative PK sensitivity. Two cases exhibited molecular weight and glycoform profiles similar to those of previously reported atypical cases, one corresponding to H-type BSE (case 6) and the other to L-type BSE (case 11). All other cases were classified as C-type. PK digestion under mild and stringent conditions revealed a reduced protease resistance in both of these cases compared to the C-type cases. With Western immunoblotting, N-terminal-specific antibodies bound to PrPres from case 6 but not to that from case 11 or C-type cases. C-terminal-specific antibodies revealed a shift in the glycoform profile and detected a fourth protein fragment in case 6, indicative of two PrPres subpopulations in H-type BSE. No mutations suggesting a genetic etiology were found in any of the 17 animals by sequencing the full PrP-coding sequence in exon 3 of the PRNP gene. Thus, each of the three known BSE types have been confirmed in Canadian cattle and show molecular characteristics highly similar to those of classical and atypical BSE cases described from Europe, Japan and the USA. The occurrence of atypical cases of BSE in countries such as Canada with low BSE prevalence and transmission risk argues for the occurrence of sporadic forms of BSE worldwide

    Evaluating the Distribution of African Swine Fever Virus Within a Feed Mill Environment Following Manufacture of Inoculated Feed

    Get PDF
    With the global spread of African swine fever virus (ASFV) and evidence that feed and/or ingredients may be potential vectors for pathogen transmission, it is critical to understand the role the feed manufacturing industry may have in regard to potential distribution of this highly virulent virus. A pilot-scale feed mill consisting of a mixer, bucket elevator, and relevant spouting was constructed in the Biosafety Level-3 Ag animal room at the Biosecurity Research Institute at Kansas State University. A total of 18 different sites on the equipment and in the room were swabbed to evaluate environmental contamination before and after introduction of ASFV-inoculated feedstuff. First, a batch of feed was manufactured through the system to confirm the feed mill was ASFV negative; then a feedstuff inoculated with ASFV was added into the mixer and manufactured with other, non-infected ingredients. Ingredients were mixed and discharged through the bucket elevator. Subsequently, four additional ASFV-free batches of feed were manufactured. Environmental swabs were collected after each batch of feed was discharged with locations categorized into four zones: A) feed contact surface, B) non-feed contact surface but \u3c 3.2 feet away from feed, C) non-feed contact surface \u3e 3.2 feet from feed, and D) transient surfaces such as worker shoes. Environmental swabs were analyzed using qPCR analysis for the P72 ASFV gene in a BSL-3 laboratory setting to detect ASFV-specific DNA. Environmental swabs collected prior to ASFV inoculation of feed were negative for ASFV DNA. Environmental swabs collected after the manufacture of ASFV-inoculated feed resulted in contamination of zones A-D. Contamination levels with ASFV-DNA are reported as Ct value or genomic copy number (CN) per mL. In this setup, there was no evidence of sampling zone × batch interaction and no difference in the proportion of ASFV positive reactions between sampling location or batch of feed throughout the experiment. This indicates that once ASFV contamination entered the facility, the contamination quickly becomes widespread and persists on the environmental surfaces, even during manufacturing of subsequent batches of ASFV non-inoculated feed. Samples from transient surfaces (Zone D) had more detectable ASFV (a lower Ct value) compared to all other surfaces (P \u3c 0.05), indicating high level of ASFV contamination (high CN values). Samples collected after manufacturing sequence 3 had less detectable ASFV (a greater Ct value) compared to samples collected immediately following manufacture of the ASFV-inoculated batch of feed (P \u3c 0.05), indicating lower levels of ASFV contamination (low CN values) in subsequent repeats of the feed production process. There was evidence of a sampling zone × batch interaction for the number of genomic copies/mL (P = 0.002). For samples collected after manufacture of the ASFV-inoculated batch of feed, a lower number of ASFV genomic copies/mL (higher Ct) was observed for swabs collected from non-feed contact surfaces \u3e 3.2 feet from feed (Zone C) compared to feed contact surfaces (zone A) (P \u3c 0.05), with other surfaces (zone B and D) having no evidence of a significant difference. Following manufacturing sequences 1, 2, and 3, samples collected from the transient surfaces (zone D) had a greater number of ASFV genomic copies/mL (low Ct) detected compared to other sampling locations (P \u3c 0.05). After manufacturing sequence 4, there was no evidence of a difference in the number of detected ASFV genomic copies/mL between sampling locations (P \u3e 0.05). In summary, once ASFV was experimentally introduced into a feed manufacturing environment, the virus became widely distributed throughout the facility with only minor changes in detection frequency as subsequent batches of feed were produced

    Effect of mixing and feed batch sequencing on the prevalence and distribution of African swine fever virus in swine feed

    Get PDF
    It is critical to have methods that can detect and mitigate the risk of African swine fever virus (ASFV) in potentially contaminated feed or ingredients bound for the United States. The purpose of this work was to evaluate feed batch sequencing as a mitigation technique for ASFV contamination in a feed mill, and to determine if a feed sampling method could identify ASFV following experimental inoculation. Batches of feed were manufactured in a BSL-3Ag room at Kansas State University's Biosafety Research Institute in Manhattan, Kansas. First, the pilot feed manufacturing system mixed, conveyed, and discharged an ASFV-free diet. Next, a diet was manufactured using the same equipment, but contained feed inoculated with ASFV for final concentration of 5.6 × 104 TCID50/g. Then, four subsequent ASFV-free batches of feed were manufactured. After discharging each batch into a collection container, 10 samples were collected in a double ‘X’ pattern. Samples were analysed using a qPCR assay for ASFV p72 gene then the cycle threshold (Ct) and Log10 genomic copy number (CN)/g of feed were determined. The qPCR Ct values (p < .0001) and the Log10 genomic CN/g (p < .0001) content of feed samples were impacted based on the batch of feed. Feed samples obtained after manufacturing the ASFV-contaminated diet contained the greatest amounts of ASFV p72 DNA across all criteria (p < .05). Quantity of ASFV p72 DNA decreased sequentially as additional batches of feed were manufactured, but was still detectable after batch sequence 4. This subsampling method was able to identify ASFV genetic material in feed samples using p72 qPCR. In summary, sequencing batches of feed decreases concentration of ASFV contamination in feed, but does not eliminate it. Bulk ingredients can be accurately evaluated for ASFV contamination by collecting 10 subsamples using the sampling method described herein. Future research is needed to evaluate if different mitigation techniques can reduce ASFV feed contamination
    • …
    corecore