103 research outputs found

    A crossover intervention trial evaluating the efficacy of a chlorhexidine-impregnated sponge in reducing catheter-related bloodstream infections among patients undergoing hemodialysis

    Get PDF
    BACKGROUND: Catheter-related bloodstream infections (BSI) account for the majority of hemodialysis-related infections. There are no published data on the efficacy of the chlorhexidine-impregnated foam dressing at reducing catheter-related BSI in hemodialysis patients. DESIGN: Prospective non-blinded cross-over intervention trial to determine the efficacy of a chlorhexidine-impregnated foam dressing (Biopatch®) to reduce catheter-related BSI in hemodialysis patients. SETTING: Two outpatient dialysis centers PATIENTS: A total of 121 patients who were dialyzed through tunneled central venous catheters received the intervention during the trial. METHODS: The primary outcome of interest was the incidence of catheter-related bloodstream infections. A nested cohort study of all patients who received the Biopatch® Antimicrobial Dressing was also conducted. Backward stepwise logistic regression analysis was used to determine independent risk factors for development of BSI. RESULTS: 37 bloodstream infections occurred in the intervention group for a rate of 6.3 BSIs/1000 dialysis sessions and 30 bloodstream infections in the control group for a rate of 5.2 BSIs/1000 dialysis sessions and [RR 1.22, CI (0.76, 1.97); P=0.46]. The Biopatch® Antimicrobial Dressing was well-tolerated with only two patients (<2%) experiencing dermatitis that led to its discontinuation. The only independent risk factor for development of BSI was dialysis treatment at one dialysis center [aOR 4.4 (1.77, 13.65); P=0.002]. Age ≥ 60 years [aOR 0.28 (0.09, 0.82); P=0.02] was associated with lower risk for BSI. CONCLUSION: The use of a chlorhexidine-impregnated foam dressing (Biopatch®) did not decrease catheter-related BSIs among hemodialysis patients with tunneled central venous catheters

    Mendelian randomisation for mediation analysis: current methods and challenges for implementation

    Get PDF
    Mediation analysis seeks to explain the pathway(s) through which an exposure affects an outcome. Traditional, non-instrumental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to confounding between an exposure, mediator and outcome and measurement error. Mendelian randomisation (MR) can be used to improve causal inference for mediation analysis. We describe two approaches that can be used for estimating mediation analysis with MR: multivariable MR (MVMR) and two-step MR. We outline the approaches and provide code to demonstrate how they can be used in mediation analysis. We review issues that can affect analyses, including confounding, measurement error, weak instrument bias, interactions between exposures and mediators and analysis of multiple mediators. Description of the methods is supplemented by simulated and real data examples. Although MR relies on large sample sizes and strong assumptions, such as having strong instruments and no horizontally pleiotropic pathways, our simulations demonstrate that these methods are unaffected by confounders of the exposure or mediator and the outcome and non-differential measurement error of the exposure or mediator. Both MVMR and two-step MR can be implemented in both individual-level MR and summary data MR. MR mediation methods require different assumptions to be made, compared with non-instrumental variable mediation methods. Where these assumptions are more plausible, MR can be used to improve causal inference in mediation analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-021-00757-1

    Examiners\u27 decision‐making processes in observation-based clinical examinations

    Get PDF
    Background: Objective structured clinical examinations (OSCEs) are commonly used to assess the clinical skills of health professional students. Examiner judgement is one acknowledged source of variation in candidate marks. This paper reports an exploration of examiner decision making to better characterise the cognitive processes and workload associated with making judgements of clinical performance in exit‐level OSCEs. Methods: Fifty‐five examiners for exit‐level OSCEs at five Australian medical schools completed a NASA Task Load Index (TLX) measure of cognitive load and participated in focus group interviews immediately after the OSCE session. Discussions focused on how decisions were made for borderline and clear pass candidates. Interviews were transcribed, coded and thematically analysed. NASA TLX results were quantitatively analysed. Results: Examiners self‐reported higher cognitive workload levels when assessing a borderline candidate in comparison with a clear pass candidate. Further analysis revealed five major themes considered by examiners when marking candidate performance in an OSCE: (a) use of marking criteria as a source of reassurance; (b) difficulty adhering to the marking sheet under certain conditions; (c) demeanour of candidates; (d) patient safety, and (e) calibration using a mental construct of the \u27mythical [prototypical] intern\u27. Examiners demonstrated particularly higher mental demand when assessing borderline compared to clear pass candidates. Conclusions: Examiners demonstrate that judging candidate performance is a complex, cognitively difficult task, particularly when performance is of borderline or lower standard. At programme exit level, examiners intuitively want to rate candidates against a construct of a prototypical graduate when marking criteria appear not to describe both what and how a passing candidate should demonstrate when completing clinical tasks. This construct should be shared, agreed upon and aligned with marking criteria to best guide examiner training and calibration. Achieving this integration may improve the accuracy and consistency of examiner judgements and reduce cognitive workload

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts

    Evaluating knowledge to support climate action: A framework for sustained assessment. report of an independent advisory committee on applied climate assessment.

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather Climate and Society 11(3), (2019):465-487, doi: 10.1175/WCAS-D-18-0134.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.2020-05-2

    Long-acting injectable Cabotegravir + Rilpivirine for HIV maintenance therapy: Week 48 pooled analysis of phase 3 ATLAS and FLAIR trials

    Full text link
    BACKGROUND: Long-acting (LA) injectable regimens are a potential therapeutic option in people living with HIV-1. SETTING: ATLAS (NCT02951052) and FLAIR (NCT02938520) were 2 randomized, open-label, multicenter, multinational phase 3 studies. METHODS: Adult participants with virologic suppression (plasma HIV-1 RNA &lt;50 copies/mL) were randomized (1:1) to continue with their current antiretroviral regimen (CAR) or switch to the long-acting (LA) regimen of cabotegravir (CAB) and rilpivirine (RPV). In the LA arm, participants initially received oral CAB + RPV once-daily for 4 weeks to assess individual safety and tolerability, before starting monthly injectable therapy. The primary endpoint of this combined analysis was antiviral efficacy at week 48 (FDA Snapshot algorithm: noninferiority margin of 4% for HIV-1 RNA ≥50 copies/mL). Safety, tolerability, and confirmed virologic failure (2 consecutive plasma HIV-1 RNA ≥200 copies/mL) were secondary endpoints. RESULTS: The pooled intention-to-treat exposed population included 591 participants in each arm [28% women (sex at birth), 19% aged ≥50 years]. Noninferiority criteria at week 48 were met for the primary (HIV-1 RNA ≥50 copies/mL) and key secondary (HIV-1 RNA &lt;50 copies/mL) efficacy endpoints. Seven individuals in each arm (1.2%) developed confirmed virologic failure; 6/7 (LA) and 3/7 (CAR) had resistance-associated mutations. Most LA recipients (83%) experienced injection site reactions, which decreased in incidence over time. Injection site reactions led to the withdrawal of 6 (1%) participants. The serious adverse event rate was 4% in each arm. CONCLUSION: This combined analysis demonstrates monthly injections of CAB + RPV LA were noninferior to daily oral CAR for maintaining HIV-1 suppression

    Framework for sustained climate assessment in the United States

    Get PDF
    Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society, 100(5), (2019): 897-908, doi:10.1175/BAMS-D-19-0130.1.As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    Get PDF
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits

    Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants.

    Get PDF
    Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∼4 and ∼3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.This work was supported by a Canadian Institute of Health Research (CIHR) team grant awarded to E.G., A.T., M.C.V. and M.L. (TEC-128093) and the CIHR funded Epigeneome Mapping Centre at McGill University (EP1-120608) awarded to T.P. and M.L., and the Swedish Research Council, Knut and Alice Wallenberg Foundation and the Torsten Söderberg Foundation awarded to L.R. F.A. holds studentship from The Research Institute of the McGill University Health Center (MUHC). F.G. is a recipient of a research fellowship award from the Heart and Stroke Foundation of Canada. A.T. is the director of a Research Chair in Bariatric and Metabolic Surgery. M.C.V. is the recipient of the Canada Research Chair in Genomics Applied to Nutrition and Health (Tier 1). E.G. and T.P. are recipients of a Canada Research Chair Tier 2 award. The MuTHER Study was funded by a programme grant from the Wellcome Trust (081917/Z/07/Z) and core funding for the Wellcome Trust Centre for Human Genetics (090532). TwinsUK was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. T.D.S. is a holder of an ERC Advanced Principal Investigator award. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. Finally, we thank the NIH Roadmap Epigenomics Consortium and the Mapping Centers (http://nihroadmap.nih.gov/epigenomics/) for the production of publicly available reference epigenomes. Specifically, we thank the mapping centre at MGH/BROAD for generation of human adipose reference epigenomes used in this study.This is the final version. It was first published by NPG at http://www.nature.com/ncomms/2015/150529/ncomms8211/full/ncomms8211.html#abstrac
    corecore