71 research outputs found

    Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density.

    Get PDF
    OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism

    Identification of the Schistosoma mansoni TNF-Alpha Receptor Gene and the Effect of Human TNF-Alpha on the Parasite Gene Expression Profile

    Get PDF
    Schistosoma mansoni is the major causative agent of schistosomiasis in the Americas. This parasite takes advantage of host signaling molecules such as cytokines and hormones to complete its development inside the host. Tumor necrosis factor-alpha (TNF-α) is one of the most important host cytokines involved in the inflammatory response. When cercariae, the infective stage, penetrates the human skin the release of TNF-α is started. In this work the authors describe the complete sequence of a possible TNF-α receptor in S. mansoni and detect that the receptor is most highly expressed in cercariae among all life cycle stages. Aiming to mimic the situation at the site of skin penetration, cercariae were mechanically transformed in vitro into schistosomula and exposed to human TNF-α. Exposure of early-developing schistosomula to the human hormone caused a large-scale change in the expression of parasite genes. Exposure of adult worms to human TNF-α caused gene expression changes as well, and the set of parasite altered genes in the adult parasite was different from that of schistosomula. This work increases the number of known signaling pathways of the parasite, and opens new perspectives into understanding the molecular components of TNF-α response as well as into possibly interfering with parasite–host interaction

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes

    Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial

    Get PDF
    Background: Febuxostat and allopurinol are urate-lowering therapies used to treat patients with gout. Following concerns about the cardiovascular safety of febuxostat, the European Medicines Agency recommended a post-licensing study assessing the cardiovascular safety of febuxostat compared with allopurinol. Methods: We did a prospective, randomised, open-label, blinded-endpoint, non-inferiority trial of febuxostat versus allopurinol in patients with gout in the UK, Denmark, and Sweden. Eligible patients were 60 years or older, already receiving allopurinol, and had at least one additional cardiovascular risk factor. Those who had myocardial infarction or stroke in the previous 6 months or who had severe congestive heart failure or severe renal impairment were excluded. After a lead-in phase in which allopurinol dose was optimised towards achieving a serum urate concentration of less than 0·357 mmol/L (<6 mg/dL), patients were randomly assigned (1:1, with stratification according to previous cardiovascular events) to continue allopurinol (at the optimised dose) or start febuxostat at 80 mg/day, increasing to 120 mg/day if necessary to achieve the target serum urate concentration. The primary outcome was a composite of hospitalisation for non-fatal myocardial infarction or biomarker-positive acute coronary syndrome; non-fatal stroke; or cardiovascular death. The hazard ratio (HR) for febuxostat versus allopurinol in a Cox proportional hazards model (adjusted for the stratification variable and country) was assessed for non-inferiority (HR limit 1·3) in an on-treatment analysis. This study is registered with the EU Clinical Trials Register (EudraCT 2011-001883-23) and ISRCTN (ISRCTN72443728) and is now closed. Findings: From Dec 20, 2011, to Jan 26, 2018, 6128 patients (mean age 71·0 years [SD 6·4], 5225 [85·3%] men, 903 [14·7%] women, 2046 [33·4%] with previous cardiovascular disease) were enrolled and randomly allocated to receive allopurinol (n=3065) or febuxostat (n=3063). By the study end date (Dec 31, 2019), 189 (6·2%) patients in the febuxostat group and 169 (5·5%) in the allopurinol group withdrew from all follow-up. Median follow-up time was 1467 days (IQR 1029–2052) and median on-treatment follow-up was 1324 days (IQR 870–1919). For incidence of the primary endpoint, on-treatment, febuxostat (172 patients [1·72 events per 100 patient-years]) was non-inferior to allopurinol (241 patients [2·05 events per 100 patient-years]; adjusted HR 0·85 [95% CI 0·70–1·03], p<0·0001). In the febuxostat group, 222 (7·2%) of 3063 patients died and 1720 (57·3%) of 3001 in the safety analysis set had at least one serious adverse event (with 23 events in 19 [0·6%] patients related to treatment). In the allopurinol group, 263 (8·6%) of 3065 patients died and 1812 (59·4%) of 3050 had one or more serious adverse events (with five events in five [0·2%] patients related to treatment). Randomised therapy was discontinued in 973 (32·4%) patients in the febuxostat group and 503 (16·5%) patients in the allopurinol group. Interpretation: Febuxostat is non-inferior to allopurinol therapy with respect to the primary cardiovascular endpoint, and its long-term use is not associated with an increased risk of death or serious adverse events compared with allopurinol. Funding: Menarini, Ipsen, and Teijin Pharma Ltd
    corecore