387 research outputs found

    Asymptotic behaviour of multiple scattering on infinite number of parallel demi-planes

    Full text link
    The exact solution for the scattering of electromagnetic waves on an infinite number of parallel demi-planes has been obtained by J.F. Carlson and A.E. Heins in 1947 using the Wiener-Hopf method. We analyze their solution in the semiclassical limit of small wavelength and find the asymptotic behaviour of the reflection and transmission coefficients. The results are compared with the ones obtained within the Kirchhoff approximation

    Energy Level Quasi-Crossings: Accidental Degeneracies or Signature of Quantum Chaos?

    Full text link
    In the field of quantum chaos, the study of energy levels plays an important role. The aim of this review paper is to critically discuss some of the main contributions regarding the connection between classical dynamics, semi-classical quantization and spectral statistics of energy levels. In particular, we analyze in detail degeneracies and quasi-crossings in the eigenvalues of quantum Hamiltonians which are classically non-integrable. Summary: 1. Introduction; 2. Quasi-Crossing and Chaos; 3. Molecular Spectroscopy; 4. Nuclear Models; 4.1 Zirnbauer-Verbaashot-Weidenmuller Model; 4.2 Lipkin-Meshow-Glick Model; 5. Particle Physics and Field Theory; 6. Conclusions.Comment: 26 pages, Latex, 9 figures, to be published in International Journal of Modern Physics

    Semiclassical Quantisation Using Diffractive Orbits

    Full text link
    Diffraction, in the context of semiclassical mechanics, describes the manner in which quantum mechanics smooths over discontinuities in the classical mechanics. An important example is a billiard with sharp corners; its semiclassical quantisation requires the inclusion of diffractive periodic orbits in addition to classical periodic orbits. In this paper we construct the corresponding zeta function and apply it to a scattering problem which has only diffractive periodic orbits. We find that the resonances are accurately given by the zeros of the diffractive zeta function.Comment: Revtex document. Submitted to PRL. Figures available on reques

    The Quantum-Classical Correspondence in Polygonal Billiards

    Full text link
    We show that wave functions in planar rational polygonal billiards (all angles rationally related to Pi) can be expanded in a basis of quasi-stationary and spatially regular states. Unlike the energy eigenstates, these states are directly related to the classical invariant surfaces in the semiclassical limit. This is illustrated for the barrier billiard. We expect that these states are also present in integrable billiards with point scatterers or magnetic flux lines.Comment: 8 pages, 9 figures (in reduced quality), to appear in PR

    Uniform approximations for pitchfork bifurcation sequences

    Get PDF
    In non-integrable Hamiltonian systems with mixed phase space and discrete symmetries, sequences of pitchfork bifurcations of periodic orbits pave the way from integrability to chaos. In extending the semiclassical trace formula for the spectral density, we develop a uniform approximation for the combined contribution of pitchfork bifurcation pairs. For a two-dimensional double-well potential and the familiar H\'enon-Heiles potential, we obtain very good agreement with exact quantum-mechanical calculations. We also consider the integrable limit of the scenario which corresponds to the bifurcation of a torus from an isolated periodic orbit. For the separable version of the H\'enon-Heiles system we give an analytical uniform trace formula, which also yields the correct harmonic-oscillator SU(2) limit at low energies, and obtain excellent agreement with the slightly coarse-grained quantum-mechanical density of states.Comment: LaTeX, 31 pp., 18 figs. Version (v3): correction of several misprint

    Numerical investigation of iso-spectral cavities built from triangles

    Full text link
    We present computational approaches as alternatives to the recent microwave cavity experiment by S. Sridhar and A. Kudrolli (Phys. Rev. Lett. {\bf 72}, 2175 (1994)) on iso-spectral cavities built from triangles. A straightforward proof of iso-spectrality is given based on the mode matching method. Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics resemble those of GOE when the integrable part of the spectrum is removed.Comment: 15 pages, revtex, 5 postscript figure

    Distribution of Husimi Zeroes in Polygonal Billiards

    Get PDF
    The zeroes of the Husimi function provide a minimal description of individual quantum eigenstates and their distribution is of considerable interest. We provide here a numerical study for pseudo- integrable billiards which suggests that the zeroes tend to diffuse over phase space in a manner reminiscent of chaotic systems but nevertheless contain a subtle signature of pseudo-integrability. We also find that the zeroes depend sensitively on the position and momentum uncertainties with the classical correspondence best when the position and momentum uncertainties are equal. Finally, short range correlations seem to be well described by the Ginibre ensemble of complex matrices.Comment: includes 13 ps figures; Phys. Rev. E (in press

    Periodic Orbits in Polygonal Billiards

    Full text link
    We review some properties of periodic orbit families in polygonal billiards and discuss in particular a sum rule that they obey. In addition, we provide algorithms to determine periodic orbit families and present numerical results that shed new light on the proliferation law and its variation with the genus of the invariant surface. Finally, we deal with correlations in the length spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure

    Singular continuous spectra in a pseudo-integrable billiard

    Full text link
    The pseudo-integrable barrier billiard invented by Hannay and McCraw [J. Phys. A 23, 887 (1990)] -- rectangular billiard with line-segment barrier placed on a symmetry axis -- is generalized. It is proven that the flow on invariant surfaces of genus two exhibits a singular continuous spectral component.Comment: 4 pages, 2 figure

    Classical Dynamics of Anyons and the Quantum Spectrum

    Full text link
    In this paper we show that (a) all the known exact solutions of the problem of N-anyons in oscillator potential precisely arise from the collective degrees of freedom, (b) the system is pseudo-integrable ala Richens and Berry. We conclude that the exact solutions are trivial thermodynamically as well as dynamically.Comment: 19 pages, ReVTeX, IMSc/93/0
    • …
    corecore