We review some properties of periodic orbit families in polygonal billiards
and discuss in particular a sum rule that they obey. In addition, we provide
algorithms to determine periodic orbit families and present numerical results
that shed new light on the proliferation law and its variation with the genus
of the invariant surface. Finally, we deal with correlations in the length
spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure