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Distribution of Husimi zeros in polygonal billiards
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The zeros of the Husimi function provide a minimal description of individual quantum eigenstates and their
distribution is of considerable interest. We provide here a numerical study for pseudointegrable billiards which
suggests that the zeros tend to diffuse over phase space in a manner reminiscent of chaotic systems but
nevertheless contain a subtle signature of pseudointegrability. We also find that the zeros depend sensitively on
the position and momentum uncertainties (Dq and Dp, respectively! with the classical correspondence best
whenDq5Dp5A\/2. Finally, short-range correlations seem to be well described by the Ginibre ensemble of
complex matrices.@S1063-651X~99!03507-2#

PACS number~s!: 05.45.2a, 03.65.Sq
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I. INTRODUCTION

This paper deals with phase space parameterization
one-dimensionalbilliard map eigenfunctions for polygona
enclosures. Specifically, we shall deal with the Bargm
Husimi representation and study the distribution of its ze
for regular, irregular, and bouncing ball modes. Such a st
has been carried out before for integrable and chaotic
liards @1,2#, and these systems are now reasonably well
derstood in the sense that the distribution reflects a co
spondence with the underlying classical dynamics. As w
most other objects of interest in generic polygonal~pseudo-
integrable! billiards, the distribution of zeros is interesting
only to explore the existence of such a correspondence
the classical system.

Of all possible Hamiltonian systems, billiards are perha
the best understood category and exhibit the entire gamu
classical dynamics depending on the shape of the enclos
Of these, polygonal billiards form an important subcatego
and apart from the rectangle and the triang
(p/3,p/3,p/3), (p/2,p/3,p/6), (p/2,p/4,p/4), all other po-
lygonal enclosures are nonintegrable@3#. Further, the ones
with rational interior angles are pseudointegrable; they h
two constants of motion as in integrable systems and
their invariant surface in phase space has a genusg.1. One
of the simplest examples of a pseudointegrable system is
p/3 enclosure for whichg52; i.e., the invariant surface is a
double torus. Here, as in other pseudointegrable billiards,
initial ~parallel! beam of trajectories splits after success
encounters with the 2p/3 ~in generalmp/n,m.1) vertex
and traverse different paths.

There are several important consequences of pseudo
grability at the classical level that are now known. Howev
as far as semiclassics is concerned, pseudointegrable bill
are still rather poorly understood. When the dynamics is
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tegrable, an Einstein-Brillouin-Keller ansatz for the wa
function @4#

c~q!;(
j 51

N

Ajexp~ iSj /\! ~1!

works well at least in the limit\→0. In the above,Sj are the
~finitely many! branches of the classical action at energyE
andAj are constant amplitudes for integrable polygons. Su
an ansatz, however, does not work for pseudointegrable
liards even though the number of sheets that constitute
invariant surface is still finite. We shall not discuss the re
sons for its breakdown here but merely remark that no d
nite behavior for pseudointegrable eigenfunctions is know
For classically chaotic systems, on the other hand,
Schnirelman theorem@5# ~suitable phase-space measur
constructed from the eigenfunctions must tend towards
classical phase-space ergodic measure as\→0) does pro-
vide a semiclassical constraint, albeit in a measure theor
sense. Besides, there exist results on the amplitude dist
tion and spatial correlation function which have been sub
to tests@6#.

Despite the absence of any such result for pseudoi
grable polygons, numerical studies@7# such as those for the
amplitude distribution or nodal plots suggest that typic
eigenfunctions are irregular and, broadly speaking, ther
little to distinguish them from the eigenfunctions in chao
systems. In the present paper, we shall try to refine this
isting body of knowledge and will employ for this purpose
phase-space representation of quantum mechanics, whi
known to highlight certain semiclassical features for in
grable and chaotic systems. Our results are empirical, ba
on extensive numerical studies, and can be simply expre
as follows: the eigenfunctions of polygonal billiards
viewed in the Husimi representation tend to be irregularbut
nevertheless contain a subtle signature of classical pseu
integrability.

The paper is organized along the following lines. In S
II, we briefly review the Husimi-Bargman representatio
and the results on random analytic functions. We introdu
the systems that we shall study and the quantum map u
consideration in Sec. III. This is followed by our numeric
408 ©1999 The American Physical Society
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results on the Husmini function and the density of zeros
Sec. IV. Finally, correlations are discussed in Sec. V and
conclusions are summarized in Sec. VI.

II. PHASE SPACE REPRESENTATIONS

Phase-space representations of quantum wave func
are best suited in semiclassical studies since the quan
dynamics~Heisenberg equation! then appears as an explic
deformation of the classical dynamics~Liouville equation!
by shifting the analysis onto the density operatorr̂
5uc&^cu. In quantum mechanics, however, the phase-sp
representation of a state is not unique since operators (q̂,p̂,
for instance! may be ordered in various ways while havin
the same classical analog. A general expression for a
siprobability distribution function may be expressed as@8#

r (V)~q,p,t !

5
1

~2p!2E d2j ei (j* z* 1jz)\Tr@V$e2 i j* â†e2 i jâ%r̂#,

~2!

whereV refers to the ordering that is chosen. The Wign
distribution follows from a symmetric ordering of (q̂,p̂)
which implies

V$e2 i j* â†e2 i jâ%5e2 i j* â†2 i jâ, ~3!

while the Husimi function is a result of antinormal orderin

V$e2 i j* â†e2 i jâ%5e2 i jâe2 i j* â†. ~4!

Using Eqs. ~2! and ~3!, the distribution function in the
Wigner representation,rw(q,p;\), for a pure state can b
explicitly written as

rw~q,p;\!5
1

~2p\!dE ^q2h/2uc&^cuq1h/2&eip•h/\dh,

~5!

where d is the degree of freedom of a dynamical syste
Thus, the expectation of a dynamical variableÂ is repre-
sented as

Tr@Âuc&^cu#5E Aw~q,p!rw~q,p!dqdp, ~6!

where

Aw~q,p!5E ^q2h/2uÂuq1h/2&eip•h/\dh. ~7!

The Wigner function, however, takes positive as well
negativevalues and oscillates violently with a wavelength\
in phase space. A coarse-grained distribution function is t
preferred and the Husimi function

rh~q,p;\!5
1

~p\!dE rw~q8,p8;\!expS 2(
i 51

N F ~qi2qi8!2

2~Dqi !
2

1
~pi2pi8!2

2~Dpi !
2 G D dp8dq8 ~8!
n
r
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m

ce

a-

r

.

s

s

is one such example which can be expressed as a smo
ened Wigner function. In this case, the smoothening
achieved through the Gaussian centred at a phase-space
(q,p). In Eq. ~8! above,

Dqi5A\

2
s i , Dpi5A\

2

1

s i
~9!

are the uncertainties inq andp, respectively. Note thatrh is
merely a minimum-uncertainty~MU! state decomposition o
the wave functionc and can be expressed as

rh~q,p;\!5
u^zuc&u2

2p\
, ~10!

where

uz&5e2uzu2/2(
n50

`
zn

An!
un&. ~11!

$un&% are the harmonic oscillator number states,a†

5(s21/2q̂2ıs1/2p̂)/(A2\), and z5(s21/2q2ıs1/2p)/
(A2\) with s.0. Note that̂ zuz&51 while ^zuz8&Þ0. Writ-
ten explicitly for 12 degree of freedom,

^xuz&5S 1

2p~Dq!2D 1/4

eipx2(x2q)2/4(Dq)2
, ~12!

which is the minimum uncertainty wave packet who
Wigner transform is the Gaussian used in Eq.~8!.

From Eq. ~10!, it is evident thatrh takes only positive
values. The minimum wave packets,uz& and ^zu are eigen-
functions of â and â†, respectively, with eigenvaluesz and
z* . Equation~10! follows directly from Eqs.~2! and ~4! us-
ing the expansion of the identity operator

Î 5E dm~z!uz&^zu, ~13!

wheredm(z)5dqdp/(2p\).
If the system under consideration is ergodic, the Hus

density $rh
n%, corresponding to a sequence of eigensta

$cn(q)% with eigenvaluesEn→E, almost always converge
to the classical Liouville measuremE over the energy surface
SE . Thus, if f (q,p) is any smooth observable,

E f ~q,p!rh
ndqdp→E

SE

f ~q,p!dmE as E→En .

~14!

Schnirelman’s theorem, however, allows an occasional
ception ~e.g., scarred state! and for this reason, a more ap
propriate description of nonintegrable eigenfunctions is
sirable.

In 1990, Leboeuf and Voros@9# proposed that the zeros o
the Husimi function provide a minimal description of qua
tum states@10#. The first step in this direction is the cohere
state (s51) or Bargman representation,^zuc& of a stateuc&
which maps unitarily the standard Hilbert space onto
space ofentire functions with finite Bargman norm:

ici5
1

2p\ER2
uc~z!u2e2uzu2dqdp. ~15!
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410 PRE 60DEBABRATA BISWAS AND SUDESHNA SINHA
One can thus considerc(z) as a phase-phase representat
of the wave vectoruc&. Note that the zeros of the Bargma
and Husimi functions are identical. The Bargman functio
however, contains information about the phase~of the wave
function! as well and is hence a more fundamental obje
For the standard case when the phase space is a plane~the
Weyl-Heisenberg groupW1),

c~z!5e2uzu2/2(
n50

`
an

An!
zn ~W1!, ~16!

wherean are the expansion coefficients ofuc& in terms of the
harmonic oscillator number states. Similar results can
written down for the sphere@SU~2!# and the pseudo-spher
@SU~1,1!# @12,13#, though unlike the case ofW1 or SU~1,1!,
the Bargman representation ofuc& for SU~2! is finite, reflect-
ing the compactness of phase space. For Hamiltonian
tems, however, energy conservation does ensure that
manifold is compact so that Eq.~16! has, in practice, only a
finite number of terms. Clearly, then, the Husimi-Bargm
zeros specify a state completely.

It is evident that the distribution of the Husimi-Bargma
zeros depends on the distribution of the expansion co
cientsaW 5(a1 ,a2 , . . . ,an). For chaotic systems, it is natura
to expect that the choice of an arbitrary basis~harmonic os-
cillator in this case! makesaW point in any direction of Hilbert
space with equal probability@13#. The only constraint then
comes from normalization so that(an

251. For purposes of
computing the distribution of zeros, this is equivalent to t
assumption that the coefficients are drawn from a Gaus
distribution @14#:

D~aW !5
1

~2p!N expS 2(
i

uai u2

2 D . ~17!

Equation~16! with the above distribution is referred to as
random analytic function.

Random analytic functions~RAF’s! for various groups
have been studied in some detail when the coefficients
complex@13,15–17# corresponding to systems without tim
reversal symmetry. The results point to a universal behav
Thus, the density of zeros is uniform with spacings of t
order of 1/AN and the two-point correlation has a simp
form @17,18# independent of the location of the zeros. Impo
tantly, random analytic functions do seem to model chao
systems very well@16,19#.

For RAF’s with real coefficients~systems with time re-
versal symmetry!, Prosen@20# has studied the density an
the k-point correlations. The density in this case is nonu
form due to the presence of zeros on the symmetry axis~the
real line!. Away from the real axis, however, the densi
becomes uniform, and in this region, correlations tend
wards the case with complex coefficients. There are few
merical studies, however, on chaotic systems with time
versal symmetry though it might be expected that RA
with real coefficients do model them rather well.

In contrast, it is known@21# that for integrable systems
eigenfunctions follow a WKB-type ansatz@see Eq.~1!# in the
Bargmann representation too, from which it follows that t
zeros lie on fixed curves which are anti-Stokes lines of
n
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complex classical action in thez variable, along which the
zeros are equispaced with separation of order 1/N.

For the sake of completeness, it may also be noted th
random polynomial

c~z!5a01a1z1a2z21•••1aNzN, ~18!

with coefficients distributed according to Eq.~17!, has zeros
which tend to accumulate around the unit circle@15#.

With this background, we shall explore the distribution
Husimi zeros for polygonal billiard eigenfunctions in the fo
lowing sections. Unless otherwise stated, we shall cons
enclosures with unit perimeter ands51 ~coherent state!. We
shall also consider the energy,E51, and instead quantize\
so that\51/k. The \→0 then corresponds to the classic
dynamics atE51.

III. POLYGONAL BILLIARDS AND THE QUANTUM MAP

Classical billiards are enclosures within which a po
particle undergoes specular reflection. The dynamics thus
pends on its shape. For rational polygonal enclosures,
dynamics is constrained by two constants of motion such
the invariant surface is two dimensional. For the rectan
and the integrable triangles, this is a torus for whichg51.
For all other rational polygons, the invariant surface is top
logically equivalent to a sphere with multiple holes (g.1).
The simplest example is a double torus (g52) which corre-
sponds to enclosures such as thep/3 rhombus or the
L-shaped billiard. In general, the genus of any rational po
gon can be calculated from its interior angles. Thus,
mip/ni are the interior angles of a rational polygon,

g511
N

2 (
i

mi21

ni
, ~19!

where N is the least common multiple ofni , so that the
number of sheets that constitute the invariant surface isN.
Thus various sets of internal angles may have the same
nus but with differentN such that the number of distinc
momenta spanned by a generic trajectory varies from en
sure to enclosure.

While the genus does affect certain classical features
the system@22#, its influence on quantum states is not know
for certain. Studies on irrational and rational rhombus b
liards show that there is little difference between the m
phologies of generic eigenfunctions or their Husimi densit
@23#. Shudo and Shimizu@23# even note that ‘‘ . . . the dif-
ference between random features of eigenfunctions of qu
tum polygonal and the desymmetrized dispersing system
minute . . . .’’ The only difference, they noted, was the o
currence of bouncing ball states though these can be
served in other chaotic systems such as the stadium billi

Our investigation of polygonal billiard eigenfunctions lie
in this backdrop. Instead of the Husimi densities themselv
we shall study their zeros following Tualle and Voros@1#.
The systems we choose are triangles and rhombus billia
and for all practical purposes, these can be treated as pse
integrable systems irrespective of the internal angle@24,25#.

The eigenvalues and eigenfunctions can be obtained
solving the Helmholtz equation

~¹21E!C~q!50, ~20!
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with C(q)50 on the boundary. The problem can, howev
be reduced to an eigenvalue problem for an integral oper
K or a quantum Poincare´ map in various ways@26#:

c~s!5 R ds8c~s8!KD~s,s8;k!, ~21!

KD~s,s8;k!52
ık

2
cosu~s,s8!H1

(1)~kusW2sW8u!, ~22!

cosu~s,s8!5n̂~sW !• r̂~s,s8!, ~23!

whereE5k2, r̂(s,s8)5(sW2sW8)/usW2sW8u, andn̂(sW) is the out-
ward normal at the pointsW. The unknown function is now the
normal derivative on the boundary

c~s!5n̂~sW !•¹C~sW !, ~24!

and the full interior eigenfunction can be recovered throu
the mapping

C~q!52
ı

4 R dsH0
(1)~kusW2sW8u!c~s!. ~25!

Thus, the essential dynamical information lies within the
duced 12d function c(q) and we shall use this to stud
phase-space representations and look at their zeros. Fo
enclosure of unit perimeter~which we shall assume from
now on!, c(q11)5c(q). The Bargman transformc(z)
thus obeys a quasiperiodicity condition as well@1#,

c~z11!5e( i /\)pc~z!, ~26!

and the norm-finiteness condition becomes

ici5
1

2p\E2`

1`

dpE
0

1

dquc~z!u2e2uzu2,`. ~27!

IV. HUSIMI ZEROS IN POLYGONS: RESULTS

The distribution of Husimi-Bargman zeros in polygon
billiards has not been investigated before, and as rema
earlier, the only properties known about the eigenfunctio
are from numerical studies. The lack of concrete res
leaves us with little expectation and perhaps the only con
ture that can be made is that the distribution of Husimi ze
of polygonal billiards should differ from the regularly spac

FIG. 1. Thez axis is the Husimi densityrh of the equilateral
triangle eigenfunction atk5900.142 corresponding to the quantu
numbers (26,81).
,
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zeros along fixed curves typical of integrable systems.
Note that classical Poincare´ section plots in suitable

~Birkhoff! coordinates do not immediately reveal the dr
matic difference between integrable and pseudointegra
polygons. In both cases, the points lie along a finite num
of sinu5constant lines whereu is the angle between the ra
and the inward normal at the boundary pointq. Thus there is
little difference between the Poincare´ sections of the equilat-
eral triangle and thep/3 rhombus. With increasing genu
however, the number of such lines generally increases as
trajectory explores a larger number of momentum directio

Semiclassically, the Husimi eigendistribution function
known to be localized near the torus for integrable syste
@27# while its zeros distribute themselves along curves ma
mally distant from the invariant curves~anti-Stokes lines!.
As an example, we first consider the equilateral triangle
liard. Figure 1 shows the Husimi distribution of a typic
eigenstate with quantum number (m,n)5(26,81) while Fig.
2 is a plot of its zeros. Clearly, the Husimi distribution
peaked on the corresponding torus as evident from Fig
while the zeros lie on lines located away from the toru
Further, the zeros are equispaced on each line though
spacings typically do vary from line to line.

The zeros do not always distribute themselves alo
straight lines in all integrable polygons and the equilate
triangle with its high symmetry is a rather special case.

FIG. 2. Husimi zeros of the eigenfunction considered in Fig.

FIG. 3. Classical surface of the section plot in Birkhoff coord
nates of trajectories on the corresponding torus~see Fig. 1 for de-
tails!. Herep5sinu whereu is the angle between the ray and th
inward normal at the pointq measured along the boundary.
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412 PRE 60DEBABRATA BISWAS AND SUDESHNA SINHA
fact, the distribution of zeros of an equilateral state viewed
another enclosure@related by symmetry—for instance, th
(p/6,p/3,p/2) triangle or thep/3 rhombus# looks very dif-
ferent. Figure 4 is an example where the fixed curves are
always straight lines though the zeros are equispaced a
each curve.

As examples of pseudointegrable polygons, we shall c
sider rhombus and triangle billiards. Since the choice of
closure plays an important role in determining the distrib
tion of zeros, we shall use thep/3 rhombus to compare th
regular and irregular states. Note that the regular state
this case correspond to equilateral triangle modes which v
ish on the shorter diagonal and they comprise approxima
half the total number of states in thep/3 enclosure~Fig. 4 is
an example!. The irregular states, on the other hand a
‘‘pure rhombus’’ modes@7# which do not vanish on the
shorter diagonal. Barring the bouncing-ball modes, ‘‘pu
rhombus’’ modes display features typical of irregular wa
functions. We shall look for the differences in the distrib
tion of zeros between~i! regular and irregular modes and~ii !
bouncing-ball and nonbouncing-ball ‘‘pure rhombus
modes.

Figure 5 displays the zeros of a typical irregular ‘‘pu
rhombus’’ mode. The zeros are no longer distributed alo
curves and they tend to diffuse all over the phase space. N
that there is a reflection symmetry in this case about thq
50.25, 0.5, and 0.75 lines; so the zeros need only be vie

FIG. 4. Husimi zeros of the equilateral triangle mode atk
5532.751 viewed in thep/3 rhombus.

FIG. 5. Zeros of an irregular ‘‘pure rhombus’’ mode atk
5650.336.
n

ot
ng

n-
-
-

in
n-
ly

e

g
te

ed

in a quarter of the phase space. Clearly, they are more or
randomly distributed with no clear alignment along a
curve, barring some exceptions where two or more zeros
distributed around somep5const line. These observation
are in sharp contrast to the distribution of zeros for integra
polygons.

We next look at the zeros of a neighboring bouncing-b
state. Studies on the stadium billiard have shown that
Husimi zeros of bouncing-ball modes are distributed ra
domly over the entire phase space as in case of irreg
modes—an observation that may seem counterintuit
keeping in mind the existence of approximate quantum nu
bers in the description of such states@28#. Figure 6 shows the
Husimi zeros of a typical bouncing-ball mode in thep/3
rhombus. The distribution is no different from the earli
case with few zeros distributed aroundp5const lines and the
other zeros distributed randomly.

The symmetry of the rhombus leads to redundant ze
and hence poor statistics as compared to an unsymm
polygon at the same energy. However, it does show that
Husimi zeros do not align themselves along fixed curves
rather tend to diffuse over phase space with some amoun
clustering around a fewp5const lines. As further evidence
we display the Husimi zeros of a typical state in t
(p/4,p/5) triangle in Fig. 7. They are indeed distributed ov
the entire classical phase space while the dashed lines
cate a tendency to cluster around certain momenta. This
fect, however, seems to be pronounced only in systems
low genus. Thus, for the triangle with internal angl
(97p/301,79p/501), there seems to be little or no clusterin
~see Fig. 8! and the zeros seem to be genuinely distribu
over the entire phase space as in chaotic billiards. Figu
shows a set of four histograms which illustrate this diffe
ence in clustering. Thex axis of the histograms gives th
momenta value and they axis shows the fraction of zero
occurring in a bin. The peaked distribution at specificp val-
ues for the low-genus (p/4,p/5) triangle indicates a cluster
ing of its zeros. In contrast the high-genus case shows
almost uniform distribution of zeros away from the real ax
marked by a nearly flat histogram~barring the enhanced den
sity aroundp50).

Thus, eigenstates of generic@25# pseudointegrable bil-
liards tend to behave like their chaotic counterparts insofa
the distribution of zeros is concerned. This suggests

FIG. 6. Zeroes of a neighboring bouncing-ball ‘‘pure rhombu
mode atk5660.531.
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there is no obvious semiclassical correspondence in non
grable polygonal billiards. In integrable polygons, howev
the correspondence is clear at least whenDqi5Dpi5A\/2
@see Eq.~9!#. However, when this not so~the minimum un-
certainty state is not a coherent state@29#!, the zeros tend to
move withs. As an example, we display here the zeros of
equilateral triangle mode for two values ofs in Fig. 10.
When s5A\/2, the zeros are equispaced and lie on a li
However, ass is reduced, the zeros move outwards a
realign themselves on a curve as shown in the figure. Fina
as s is reduced further, the zeros start moving out of t
classical phase space.

V. CORRELATIONS

In the previous section, we found that the zeros in non
tegrable polygonal enclosures are uniformly distributed aw

FIG. 8. Husimi zeros of the (97p/301, 79p/501) triangle for
which g@1. The distribution is similar to those of chaotic billiard
even though the invariant surface is two-dimensional. Herek
51500.1803.

FIG. 7. Husimi zeros of the (p/4,p/5) triangle mode at
900.239. The dashed lines indicate constantp lines about which
some zeros have a tendency to cluster.
te-
,

n

.
d
y,
e

-
y

from the real axis and hence are like those of random a
lytic functions with real coefficients which presumab
model chaotic systems with time reversal symmetry. To
certain how close the distributions are, we shall study h
the nearest-neighbor spacing distributionP(s) and the two-
point correlationR2(r ).

A. Nearest-neighbor distribution

The nearest-neighbor spacings distribution is the simp
statistic to perform though there exists no analytic pred
tions for RAF’s with real or complex coefficients. The curv
in Fig. 11 for random analytic functions is thus determin

FIG. 10. Two sets of zeros forDq5A\/250.064 583 2 (3) and
0.018 (L), respectively, for an equilateral state. Notice the ze
moving away in the latter case. AsDq is reduced further, some o
the zeros leave the classical phase space.

FIG. 9. Histograms illustrating the clustering of zeros. Thex
axis gives the value of momentap (pP@0,1# is shown; the interval
pP@21,0# is a reflection of@0,1#). The y axis of the histogram
shows the fraction of zeros occurring in a bin aroundp. Here bin
size is 0.025. Four cases are shown:~a! zeros of the (p/4,p/5)
triangle mode at 600.099,~b! zeros of the (p/4,p/5) triangle mode
at 900.239,~c! zeros of the (12345p/89762, 2011p/5431) triangle
at 600.125, and~d! zeros of the (12345p/89762, 2011p/5431) tri-
angle at 900.071. The peaked distribution at specificp values for
the low-genus (p/4,p/5) triangle indicates a clustering of its zero
In constrast the high genus case shows an almost uniform dist
tion of zeros marked by a nearly flat histogram~barring the en-
hanced density aroundp50).
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numerically. A total of approximately 25 000 zeros from 5
eigenstates of three different nonintegrable triangles has b
used for computing the nearest-neighbor distribution of
neric polygons. The zeros have been unfolded such
*sP(s)ds51

Figure 11 shows a plot of the integrated spacing distri
tion I (s)5*0

sP(s8)ds8 for polygons and a comparison wit
random analytic function having real coefficients. The agr
ment is fair but there are deviations indicating perhaps
the underlying assumption about the distribution of coe
cients@see Eq.~17!# is not fully justified.

Remarkably, however, the Ginibre ensemble@30,31# of
complex random matrices shows much better agreement
evident from Fig. 11. In this case, the integrated spac
distribution @31# I G(s)5 i (^s&s) where^s&5*0

`ds@12 i (s)#
51.142 929 and

i ~s!512 lim
N→`

)
n51

N21

@en~s2!e2s2
#, ~28!

where

en~x!511
x

1!
1

x2

2!
1•••1

xn

n!
. ~29!

At small values ofs, I G(s);s4 and henceP(s);s3. In
comparison, the nearest neighbor spacing distribution for
correlated points thrown at random on the plane exhibits
level repulsion.

B. Two-point correlation

For SU~2! random analytic functions with complex coe
ficients, thek-point correlation function has been comput
by Hannay analytically. In particular, the two-point functio
R2(r1 ,r2)5^r(r1)r(r2)& depends only on the relative dis
tancer between pointsr1 andr2 since the density if uniform.
In the asymptotic~number of zeros,N→`) limit,

R2~r !.
~sinh2v1v2!coshv22v sinhv

sinh3v
, ~30!

FIG. 11. The integrated nearest-neighbor distributionI (s)
5*0

sP(s8)ds8 for ~i! nonintegrable triangles~short-dashed curve!,
~ii ! Gaussian random analytic function with real coefficients~long-
dashed curve!, and~iii ! the prediction for the Ginibre ensemble o
complex matrices~solid line!.
en
-
at

-

-
at
-

is
g

n-
o

where v5pr 2/2 and r is measured in terms of the mea
spacing (A4p/N for the sphere!. This result holds for other
phase-space topologies as well whenN→` and the coeffi-
cients are complex.

For systems with time reversal symmetry~real coeffi-
cients!, the density is not uniform everywhere and hen
R2(r1 ,r2) is sensitive to the location of the zeros. Awa
from the real axis, however,R2 has the limiting behavior
given by Eq.~30!.

For the Ginibre ensemble of complex random matric
the density is uniform and the two-point correlation~in un-
folded units!

R2~r1 ,r2!512exp~2pur 12r 2u2! ~31!

is a function of the distance between the two zeros. Note
Eq. ~31! does not have the characteristic hump atr .1 asso-
ciated with random analytic functions.

In Fig. 12, we present results for three different triangl
The close agreement suggests that there is possibly a un
sality in the distribution of zeros of nonintegrable polygo
~corroborated by similar studies on the nearest neighbor!. We
next compare~see Fig. 13! the average of the combined da
with the predictions for the Ginibre ensemble@see Eq.~31!#

FIG. 12. The two-point correlationR2 for three different nonin-
tegrable triangles (8p/31, 17p/97), (97p/301, 79p/501), and
(12345p/89762, 2011p/5431). Herer is measured in terms of the
mean spacingA2p\.

FIG. 13. The two-point correlationR2 averaged over the thre
triangles~histogram! compared to the prediction for Gaussian ra
dom analytic functions with complex coefficients~dashed curve!
and the Ginibre ensemble prediction@solid curve; see Eq.~31!#.



o

o
b

e
x
in

tio
u

ty

so
s a

ros
ace
al
h

nd
-
by
is,
ing

ith
ble
ges
ns

PRE 60 415DISTRIBUTION OF HUSIMI ZEROS IN POLYGONAL . . .
and Eq.~30!. The deviations from the RAF predictions@32#
are evident while the Ginibre ensemble result agrees with
data very well.

VI. CONCLUSIONS

We have studied the distribution of Husimi zeros in p
lygonal billiards in this paper and our observations can
summarized as follows.

~i! In integrable enclosures, the Husimi density is peak
on the classical torus and the zeros lie equispaced on fi
curves that are located away from the torus when the m
mum uncertainty state is a coherent state.

~ii ! The zeros tend to move as the uncertainties in posi
and momentum are varied even as they obey the minim
uncertainty relation. Thus, coherent states (Dp5Dq
5A\/2) are the most classical of all minimum uncertain
states.

~iii ! A weak signature of pseudointegrability can be as
ciated with the clustering of some zeros around a few line
observed in some low-genus polygons.
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~iv! For generic pseudointegrable enclosures, the ze
tend to be randomly distributed over the entire phase sp
as in chaotic billiards or random analytic functions with re
coefficients. This is especially true for polygons with hig
genus.

~v! The nearest-neighbor spacing distribution of zeros a
the two-point correlationR2(r ) suggests that for pseudointe
grable billiards, the correlations are very well described
the Ginibre ensemble of complex random matrices. It
however, not clear why this is so and a proper understand
is desirable.
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