1,087 research outputs found

    Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate

    No full text
    Accurate prediction of nonpremixed turbulent combustion using large eddy simulation(LES) requires detailed modeling of the mixing between fuel and oxidizer at scales finer than the LES filter resolution. In conserved scalar combustion models, the small scale mixing process is quantified by two parameters, the subfilter scalar variance and the subfilter scalar dissipation rate. The most commonly used models for these quantities assume a local equilibrium exists between production and dissipation of variance. Such an assumption has limited validity in realistic, technically relevant flow configurations. However, nonequilibrium models for variance and dissipation rate typically contain a model coefficient whose optimal value is unknown a priori for a given simulation. Furthermore, conventional dynamic procedures are not useful for estimating the value of this coefficient. In this work, an alternative dynamic procedure based on the transport equation for subfilter scalar variance is presented, along with a robust conditional averaging approach for evaluation of themodel coefficient. This dynamic nonequilibrium modeling approach is used for simulation of a turbulent lifted ethylene flame, previously studied using DNS by Yoo et al. (Proc. Comb. Inst., 2011). The predictions of the new model are compared to those of a static nonequilibrium modeling approach using an assumed model coefficient, as well as those of the equilibrium modeling approach. The equilibrium models are found to systematically underpredict both subfilter scalar variance and dissipation rate. Use of the dynamic procedure is shown to increase the accuracy of the nonequilibrium modeling approach. However, numerical errors that arise as a consequence of grid-based implicit filtering appear to degrade the accuracy of all three modeling options. Thus, while these results confirm the usefulness of the new dynamic model, they also show that the quality of subfilter model predictions depends on several factors extrinsic to the formulation of the subfilter model itself

    Analysis of turbulent flame propagation in equivalence ratio-stratified flow

    No full text
    Equivalence ratio-stratified combustion is an important technology for achieving stable low-emission operation in internal combustion engines and gas turbines. This study examines how equivalence ratio stratification affects the physics of turbulent flame propagation using Direct Numerical Simulation. Three-dimensional simulations of a turbulent slot-Bunsen flame configuration are performed with accurate multi-step kinetic modelling for methane-air combustion. We compare one perfectly-premixed and three equivalence ratio-stratified cases with the mean equivalence ratio gradient aligned with, tangential to or opposed to the mean flame brush. The simulation results are analysed in terms of flame surface area and the burning intensity. The local effects of stratification are then investigated further by examining statistics of the displacement speed conditioned on the flame-normal equivalence ratio gradient. The local burning intensity is found to depend on the orientation of the stratification with respect to the flame front, so that burning intensity is enhanced when the flame speed in the products is faster than in the reactants. This effect of alignment between equivalence ratio gradients and flame fronts has been observed previously in laminar flames and it is found here that it also affects the global behaviour of turbulent flames. The flame surface area is also influenced by equivalence ratio stratification and this may be explained by differences in the surface-averaged consumption speed and differential propagation effects due to flame speed variations associated with equivalence ratio fluctuations

    Efficient low-threshold lasers based on an erbium-doped holey fiber

    Get PDF
    We report experimental results on the continuous-wave lasers based on a small core erbium-doped holey fiber. In a simple Fabry-Perot-type cavity with high output coupling, we demonstrate low-threshold (0.55 mW) high slope-efficiency (57.3%) operation confirming both the quality and exceptionally high gain efficiency of the fiber. In an all-fiber ring cavity where the cavity loss is reduced, we show that it is possible to achieve a low-threshold laser with extremely wide tunability (>100 nm around 1550 nm). Our results illustrate some of the unique opportunities provided by active small core holey fibers

    The quick and the dead: when reaction beats intention

    Get PDF
    Everyday behaviour involves a trade-off between planned actions and reaction to environmental events.Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a ‘reactive advantage’ in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival

    A New Metaheuristic Bat-Inspired Algorithm

    Full text link
    Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.Comment: 10 pages, 2 figure

    The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000

    Full text link
    To measure the floor in interplanetary magnetic field and estimate the time- invariant open magnetic flux of Sun, it is necessary to know a part of magnetic field of Sun carried away by CMEs. In contrast with previous papers, we did not use global solar parameters: we identified different large-scale types of solar wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs) and calculated magnitude of interplanetary magnetic field B averaged over 2 Carrington rotations. The floor of magnetic field is estimated as B value at solar cycle minimum when the ICMEs were not observed and it was calculated to be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous results.Comment: 10 pages, 2 figures, submitted in GR

    Football in the community schemes: Exploring the effectiveness of an intervention in promoting healthful behaviour change

    Get PDF
    This study aims to examine the effectiveness of a Premier League football club’s Football in the Community (FitC) schemes intervention in promoting positive healthful behaviour change in children. Specifically, exploring the effectiveness of this intervention from the perspectives of the participants involved (i.e. the researcher, teachers, children and coaches). A range of data collection techniques were utilized including the principles of ethnography (i.e. immersion, engagement and observations), alongside conducting focus groups with the children. The results allude to the intervention merely ‘keeping active children active’ via (mostly) fun, football sessions. Results highlight the important contribution the ‘coach’ plays in the effectiveness of the intervention. Results relating to working practice (i.e. coaching practice and coach recruitment) are discussed and highlighted as areas to be addressed. FitC schemes appear to require a process of positive organizational change to increase their effectiveness in strategically attending to the health agenda

    Fibre Bragg grating based rectangular pulse switching technology for timing jitter tolerant OTDM data demultiplexing

    No full text
    The use of fiber Bragg grating based rectangular pulse switching technology for timing-jitter tolerant data demultiplexing in a high speed OTDM system is reviewed. Error-free demultiplexing operation with significant timing jitter-tolerance is easily achieved by simply adding a grating to the system. A substantial power-penalty improvement can also be achieved compared to demultiplexing without the grating
    corecore