24,204 research outputs found
Highly nonlinear dynamics in a slowly sedimenting colloidal gel
We use a combination of original light scattering techniques and particles
with unique optical properties to investigate the behavior of suspensions of
attractive colloids under gravitational stress, following over time the
concentration profile, the velocity profile, and the microscopic dynamics.
During the compression regime, the sedimentation velocity grows nearly linearly
with height, implying that the gel settling may be fully described by a
(time-dependent) strain rate. We find that the microscopic dynamics exhibit
remarkable scaling properties when time is normalized by strain rate, showing
that the gel microscopic restructuring is dominated by its macroscopic
deformation.Comment: Physical Review Letters (2011) xxx
Cross and magnetic helicity in the outer heliosphere from Voyager 2 observations
Plasma velocity and magnetic field measurements from the Voyager 2 mission
are used to study solar wind turbulence in the slow solar wind at two different
heliocentric distances, 5 and 29 astronomical units, sufficiently far apart to
provide information on the radial evolution of this turbulence. The magnetic
helicity and the cross-helicity, which express the correlation between the
plasma velocity and the magnetic field, are used to characterize the
turbulence. Wave number spectra are computed by means of the Taylor hypothesis
applied to time resolved single point Voyager 2 measurements. The overall
picture we get is complex and difficult to interpret. A substantial decrease of
the cross-helicity at smaller scales (over 1-3 hours of observation) with
increasing heliocentric distance is observed. At 5 AU the only peak in the
probability density of the normalized residual energy is negative, near -0.5.
At 29 AU the probability density becomes doubly peaked, with a negative peak at
-0.5 and a smaller peak at a positive values of about 0.7. A decrease of the
cross-helicity for increasing heliocentric distance is observed, together with
a reduction of the unbalance toward the magnetic energy of the energy of the
fluctuations. For the smaller scales, we found that at 29 AU the normalized
polarization is small and positive on average (about 0.1), it is instead zero
at 5 AU. For the larger scales, the polarization is low and positive at 5 AU
(average around 0.1) while it is negative (around - 0.15) at 29 AU.Comment: 14 pages 5 figures. Accepted for publication on European Journal of
Mechanics B/Fluids (5/8/2015
Dispersion of tracer particles in a compressible flow
The turbulent diffusion of Lagrangian tracer particles has been studied in a
flow on the surface of a large tank of water and in computer simulations. The
effect of flow compressibility is captured in images of particle fields. The
velocity field of floating particles has a divergence, whose probability
density function shows exponential tails. Also studied is the motion of pairs
and triplets of particles. The mean square separation is fitted to
the scaling form ~ t^alpha, and in contrast with the
Richardson-Kolmogorov prediction, an extended range with a reduced scaling
exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly
deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure
Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU
Fluctuations in the flow velocity and magnetic fields are ubiquitous in the
Solar System. These fluctuations are turbulent, in the sense that they are
disordered and span a broad range of scales in both space and time. The study
of solar wind turbulence is motivated by a number of factors all keys to the
understanding of the Solar Wind origin and thermodynamics. The solar wind
spectral properties are far from uniformity and evolve with the increasing
distance from the sun. Most of the available spectra of solar wind turbulence
were computed at 1 astronomical unit, while accurate spectra on wide frequency
ranges at larger distances are still few. In this paper we consider solar wind
spectra derived from the data recorded by the Voyager 2 mission during 1979 at
about 5 AU from the sun. Voyager 2 data are an incomplete time series with a
voids/signal ratio that typically increases as the spacecraft moves away from
the sun (45% missing data in 1979), making the analysis challenging. In order
to estimate the uncertainty of the spectral slopes, different methods are
tested on synthetic turbulence signals with the same gap distribution as V2
data. Spectra of all variables show a power law scaling with exponents between
-2.1 and -1.1, depending on frequency subranges. Probability density functions
(PDFs) and correlations indicate that the flow has a significant intermittency.Comment: 14 pages, 7 figures. Discussion improved since the previous versio
Electrochemical Energy Storage Subsystems Study, Volume 2
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values
Electrochemical energy storage subsystems study, volume 1
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values
Theory of pattern-formation of metallic microparticles in poorly conducting liquid
We develop continuum theory of self-assembly and pattern formation in
metallic microparticles immersed in a poorly conducting liquid in DC electric
field. The theory is formulated in terms of two conservation laws for the
densities of immobile particles (precipitate) and bouncing particles (gas)
coupled to the Navier-Stokes equation for the liquid. This theory successfully
reproduces correct topology of the phase diagram and primary patterns observed
in the experiment [Sapozhnikov et al, Phys. Rev. Lett. v. 90, 114301 (2003)]:
static crystals and honeycombs and dynamic pulsating rings and rotating
multi-petal vortices.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Precise exception handling for a self-timed processor
Journal ArticleSelf-timed systems structured as multiple concurrent processes and communicating through self-timed queues are a convenient way to implement decoupled computer architectures. Machines of this type can exploit instruction level parallelism in a natural way, and can be easily modified and extended. However, providing a precise exception model for a self-timed micropipelined processor can be difficult, since the processor state does not change at uniformly discrete intervals. We present a precise exception method implemented for Fred, a self-timed, decoupled, pipelined computer architecture with out-of-order instruction completion
Turbulent Pair Diffusion
Kinematic Simulations of turbulent pair diffusion in planar turbulence with a
-5/3 energy spectrum reproduce the results of the laboratory measurements of
Jullien Phys. Rev. Lett. 82, 2872 (1999), in particular the stretched
exponential form of the PDF of pair separations and their correlation
functions. The root mean square separation is found to be strongly dependent on
initial conditions for very long stretches of times. This dependence is
consistent with the topological picture of turbulent pair diffusion where pairs
initially close enough travel together for long stretches of time and separate
violently when they meet straining regions around hyperbolic points. A new
argument based on the divergence of accelerations is given to support this
picture
- …