
Precise Exception Handling for a Self-Timed Processor

William F. Richardson
Computer Science Department

University of Utah
Salt Lake City, UT 84112
willrich@cs.utah.edu

Abstract

Self-timed systems structured as multiple concurrent
processes and communicating through self-timed queues
are a convenient way to implement decoupled computer
architectures. Machines of this type can exploit instruction
level parallelism in a natural way, and can be easily modi­
fied and extended. However, providing a precise exception
model for a self-timed micropipeUned processor can be
difficult, since the processor state does not change at uni­
formly discrete intervals. We present a precise exception
method implemented for Fred, a self-timed, decoupled,
pipe lined computer architecture with out-of-order instruc­
tion completion.

1. Introduction

Fred 1 is an architecture for a self-timed processor
structured as a set of communicating micropipelines [9].
The basic Fred architecture is based roughly on the NSR
(Non-Synchronous RISC) architecture developed at the
University of Utah [1,5]. The NSR is a simple 16-bit
machine designed to explore the potential of self-timed
organization for computer design, but includes little sup­
port for anything but the basic microprocessor features.

The Fred architecture [6] borrows many ideas from
the NSR. However, Fred includes 32-bit data paths and
memory addressing, provides a larger register file, and
extends the instruction set in a variety of ways that make
the architecture more realistic and more comparable to
commercial microprocessors. More importantly, Fred pro­
vides a precise exception-handling model that operates in
the extremely concurrent environment of a self-timed pro­
cessor. This exception-handling model must operate in a
decoupled environment where instruction completion is
not only out of order, but where instructions may complete
at any time relative to each other because of the self-timed
nature of the processor. Put another way, the state of the
processor is not well defined at any particular time, such as
on a particular edge of a clock signal. Standard techniques
used in synchronous processors for providing precise
exceptions cannot be used in a concurrent, self-timed envi-

1. "Fred" is not an acronym, and it doesn't mean anything. It's just a
name, like "SPARe" or "Alpha."

1063-6404/95 $4.00 © 1995 IEEE
32

Erik Brunvand
Computer Science Department

University of Utah
Salt Lake City, UT 84112

elb@cs.utah.edu

ronment. We describe a method of providing precise
exceptions in a self-timed, decoupled, pipelined processor
architecture with out-of-order instruction completion. The
additional circuitry required to add this exception model to
the architecture is on the same order as that needed for
synchronous processors of similar complexity, but oper­
ates in a somewhat different way.

2. The Fred Architecture

Fred consists of several independent self-timed pro­
cesses which communicate via FIFO micropipeline
queues. Figure 1 shows the basic organization. Each box is
an independent process. All processor data paths (shown
as wires in the figure) may be pipelined to an arbitrary
depth without affecting the computational results. Because
Fred uses self-timed micropipelines in which pipeline
stages communicate locally only with neighboring stages
to pass data, there is no extra control circuitry involved in
adding additional pipeline stages. Multiple independent
functional units allow several instructions to be in
progress at a given time. Because the machine organiza­
tion is self-timed, the functional units may take as long or
short a time as necessary to complete their function. One
of the performance advantages of a self-timed organiza­
tion is related to this ability to finish an instruction as soon
as possible, without waiting for the next discrete clock
cycle. It also allows the machine to be upgraded incremen­
tally by replacing functional units with higher perfor­
mance circuits after the machine is built, with no global
consequences or retiming. The performance benefits of the
improved circuits are realized by having the acknowledg­
ment produced more quickly, so that the instructions that
use that circuit finish faster.

Fred uses a Harvard memory architecture, with sepa­
rate paths for instructions and data. Fred contains 32 32-bit
general purpose registers, two of which have special
usage. Register rO is hardwired to zero, and register rl is
used to access the Rl Queue. This data pipeline is used to
queue up data for later use by another part of the instruc­
tion stream [6,12]. Loads from memory, for example,
might be queued in the Rl Queue by using register rl as
the destination. By using rl as a source register, a later
instruction dequeues the next word from the Rl Queue
and uses it as an operand. It may be possible to subsume
some of the memory latency by queuing up loaded data in

Set/Clear Clear
Scoreboard

Read

Dispatch Unit Operand Request Queue
Register File

.""'"

~
., Operand Queue
c: .. 0 ,-' --- -6

~ ___ ·il ...---.--- .. ___________ ~r __

i-,
~ 2 g] ill

,
" ~ "

,
0 ~ .J::. <II 0 ,
g c:

I I
.. ..

.2 Distributor c: , 6 ~
0

0 2- , <II
0

~ Lr Arithmetic Unit r ~
a:

>< ,
w

I Branch Unit
' Results ~

:II
,

Logic Unit f'" , Results ~
,4JI ,

Control Unit I'" , Results ~
:d ,

Memory Unit Results ~

, Execute Unit ~
.. ~

, .. ,
0 0

-~---------------------------~
r_ .. . '."

~ ~ !&
a:

Data Memory

Figure 1. Fred Block Diagram. Black lines are primary data paths; gray lines are
control paths. All data and control paths are pipelined queues.

the Rl Queue in advance of its use. Actually, data from
any of the functional units may be queued into the Rl
Queue to implement a form of software-controlled register
renaming.

Instructions are prefetched and issued by the Dispatch
Unit, which uses a 3 I-bit register scoreboard to avoid data
hazards. The instructions are issued in program order, but
may complete in any order. However, instructions which
write into the Rl Queue are forced to complete sequen­
tially.

There are five independent functional units in the pro­
totype implementation of Fred: Logic, Arithmetic, Mem­
ory, Branch, Control. These functional units plus the
Distributor make up the Execute Unit. The Distributor
takes incoming instructions and operands, matches them
up where needed, and routes the combined data to appro­
priate functional units for execution. Instructions pass
through the Distributor in program order but may com­
plete in any order as each pipeline depth may vary, and
each functional unit may take more or less time to execute
a given instruction.

The outgoing side of the Register File sends operands
to the Execute Unit in response to requests from the Dis­
patch Unit. The incoming side accepts results from each
functional unit independently, via a separate pipeline from
each unit. There is no contention in writing to registers,
since the register scoreboard is used by the Dispatch Unit
to ensure that instructions are not dispatched until all data
hazards are resolved. Each functional unit can also write
its results to the Rl Queue.

33

Program branching takes place in two parts. Branch
targets (and the condition code bit used to determine
whether to take the branch) are computed and placed in
the Branch Queue by one instruction, but are removed and
used to modify the Program Counter by a subsequent
"doit" instruction (to avoid extra instruction fetches, the
do i t can be implicitly inserted into the instruction stream
by setting a 1bit available in the opcode of any other
instruction). This separation allows for a variable number
of "delay slots," and lets us play some other nifty tricks.
For example, we always get correct prefetching informa­
tion, since the direction of the branch is known as soon as
the target is placed in the queue by the Branch Unit.

Deadlocking the processor is theoretically possible.
Because both the Rl Queue and the Branch Queue are
filled and emptied via two separate instructions, it is possi­
ble to issue an incorrect number of these instructions so
that the producer/consumer relationship of the queues is
violated. Fred"s dispatch logic will detect these cases, and
take an exception before an instruction sequence is issued
that would result in deadlock.

3. Exception Requirements

There are three general causes for exceptions: soft­
ware traps (including illegal opcodes), external interrupts,
and process exceptions (such as memory faults). When
exceptions oceur, it is necessary for the processor to tem­
porarily stop (~xecuting its current instruction stream and
handle whatever conditions caused the exception. Often,

once the exception has been dealt with, the processor must
be able to resume as though no exception had occurred.
Precise exception models allow the programmer to view
the processor state as though the exception occurred at a
point exactly between two instructions, such that all
instructions before that point have completed while all
those after have not yet started.

In a heavily pipelined architecture, where instructions
execute concurrently and possibly out of order, identifying
a precise point for exception handling can be costly. Sev­
eral methods have been developed to deal with this
problem [3,7,8]. However, clocked systems have the
advantage that the state of the processor is available to the
processor's control logic at every clock cycle. In a self­
timed processor like Fred, this is not the case. One charac­
teristic of a self-timed system is that while the completion
of a task is reported through a handshake of some sort, the
actual completion time for that event is not particularly
well-defined with respect to any global signal such as a
clock. While this may provide advantages in achieving
average-case performance or simplifying modular
composition [2], it makes exception processing difficult.
Much of the state of the Fred processor is contained in the
pipelines but it is problematic to determine exactly how
many items are in a particular pipeline at a given moment
in time.

This problem has been addressed in part by the AMU­
LET group at the University of Manchester [4], who have
built a self-timed implementation of the ARM. However,
its precise exception model is a simple one since its single
ALU causes all instructions to issue and complete sequen­
tially. Fred's decoupled concurrent architecture requires a
more general solution.

3.1 The Instruction Window

To resolve the uncertainty regarding instruction sta­
tus, Fred uses an Instruction Window (IW), similar to that
described in [10], to fetch and dispatch instructions. The
IW is a set of internal registers located in the Dispatch
Unit, which tracks the state of all current instructions.
Each slot in the IW contains information about each
instruction, such as its opcode, its address, its current sta­
tus, and various other parameters. As each instruction is
fetched, it is placed into the IW. New instructions may
continue to be added to the IW independently, as long as
there is room for them.

Instructions are issued from the IW in program order
when all their data dependencies are satisfied. Each issued
instruction is assigned a tag which uniquely distinguishes
it from all other current instructions. When an instruction
completes, it uses this tag to report its status to back to the
Dispatch Unit. The status is usually an indication that the
instruction completed successfully, but when an instruc­
tion is unsuccessful it returns an exception status to the
Dispatch Unit, which then begins exception processing.
Instructions are removed from the IW only after they have
completed successfully. Instructions which can never

34

cause exceptions (such as xor r2, r3, r4) do not have
to report their status, and can be removed from the IW
when they are dispatched.

3.2 Data Hazards

Data hazards are handled by the Dispatch Unit. RAW
and WAR hazards are resolved by using a simple register
scoreboard. When an instruction is dispatched, the Dis­
patch Unit marks the destination register as in use. When
the result of the instruction arrives at the register, the Reg­
ister File clears the scoreboard flag for that register. The
Dispatch Unit will not request operands from the Register
File unless the source register holds valid data.

WAW hazards are handled in the same way. An
instruction will not be dispatched unless its destination
register is available for writing. Instructions which write to
the same destination register complete sequentially, since
the second instruction will not be dispatched until the
results of the first instruction arrive at the destination reg­
ister and its scoreboard bit is cleared.

For instructions which write to the Rl Queue, the
scoreboard bit for register rl is cleared by the Dispatch
Unit when the result has been placed into the Rl Queue, as
indicated by the instruction's completion status. Instruc­
tions signal completion as soon as the functional unit
which processes them has generated a valid result, even
though that result may not yet have reached its final desti­
nation. This allows faster sequential access to the Rl
Queue, allows exceptions to be recognized earlier, and
enables successful instructions to be removed from the IW
sooner so that more instructions may be fetched. This
early completion signaling has no effect on data hazards.

3.3 Out-of-Order Completion

Because instructions may complete out of order,
recoverable exceptions can cause unforeseen WAW haz­
ards. The IW contains enough information to resolve these
issues. In [10], provision was made to reduce interrupt
latency by aborting issued instructions which would take a
long time to complete. In a self-timed processor there is no
way to tell how soon an instruction will complete, since
there are no clock cycles by which to measure progress.
Instead, when an exception occurs we simply allow all
outstanding instructions to either complete or fault before
handling the exception.

It is necessary for a faulting instruction to save its
original operands as part of the IW status. For example,
consider this code fragment:

Id r2,r3,r4
add r4,r5,r6

The instructions are issued in order. The load instruc­
tion uses sources r3 and r4 to compute the effective
address. The add instruction then modifies register r4.
This is fine, unless the load faults after the add has com-

pleted. The load cannot simply be reissued, since the orig­
inal value of r4 has been overwritten. By saving the
operands as part of the load instruction's status, software
can emulate the operation of the load instruction once the
fault has been resolved.

It might be possible to abort some instructions involv­
ing iterative processing (such as multiply or divide) when
exceptions occur. Unfortunately, matters are worse when
instructions can be aborted, because all aborted instruc­
tions need some way to recover their original operands.
This could be done via a history buffer or future buffer, or
by storing the original operands as part of the IW slot. By
not aborting issued instructions, only those instructions
which fault need to report their operands back to the IW as
part of their status. This reduces the complexity required
of the Dispatch Unit and the Register File, at the expense
of widening the data path needed to report instruction sta­
tus. Some alternatives will be discussed in Section 5.

3.4 Memory Unit

In most cases, waiting for outstanding instructions to
complete before handling exceptions does not increase the
latency by a significant amount, and in fact may reduce the
latency when compared with the time needed to save
aborted instructions as part of the processor state. The
instructions which could make a big difference are those
involving the Memory Unit. We haven't discussed the
external memory system here, but it can be assumed to
include a multilevel cache system with both fast and slow
memory. The interface to the external memory uses a stan­
dard self-timed Request/Acknowledge handshake when
dispatching loads or stores. Bundled with the acknowledg­
ment is a memory status signal used to indicate exception
conditions such as write-protection violations, page faults,
cache misses, and so forth. This status signal can allow the
processor to take an exception in the event of page faults
or even cache misses.

When a memory access instruction faults, it returns
the fault type and operands to the Dispatch Unit as part of
its completion status. All issued instructions are allowed to
complete or fault, and those which finish successfully are
removed from the IW before exception processing begins.
The exception-handling software can then repair the cause
of the exception and emulate the memory operation, based
on the operands saved in the IW. Program execution can
then resume.

3.5 Exception Software

When exception processing begins, the processor
state includes the IW contents, the address from which the
next instruction will be fetched, the Register File, and the
contents of the Rl Queue and Branch Queue. Once all out­
standing instructions have completed or faulted, the IW is
copied to a set of Shadow IW registers visible to the pro­
grammer, then cleared. Since all successful instructions
are removed from the IW when they complete, the

35

Tag Status Instruction

1 Issued add r2,r2,r2

2 None add rl,r2,r2

3 None xor r2,r3,r3

4 None mol r3,r4,r4
5 None and r4,rS,rS

6 None Id rS,r6,r6

7 None add r6,r7,r7

Figure 2. IW with data dependency.

Shadow lW contains only faulty and non-issued instruc­
tions.

This Shadow IW provides a ''functionally precise"
exception point. The exception model seen by the pro­
gmmmer is not that of a single point where the exception
occurred. Instead, there is a "window" (hence the name) of
instructions which were in progress. The hardware guaran­
tees that this window will consist only of instructions
which either faulted or had not yet issued when the excep­
tion occurred .. The instructions in the Shadow IW com­
prise a subset of a portion of the sequential instructions of
the progmm. The missing elements are instructions which
completed successfully out of order, and which should not
be reissued.

To allow additional exceptions or to perfonn a context
switch, the exception software must save the state of the
processor. All of the state can be obtained via control reg­
isters, except for the contents of the Rl Queue and the
Branch Queue, which are not automatically flushed. How­
ever, there are control registers which keep a count of the
number of items in these two queues. Instructions exist
which can be used to manually flush and reload these
queues. The other queues do not need special attention.

Although the Rl Queue can wait for software to save
and restore its contents, the Branch Queue is needed to
branch to the exception-handling code. Rather than try to
flush this qu{me in hardware, an additional queue, the
Exception Branch Queue, is used for flow control until
Branch Queue: contents have been saved. The usage of this
queue is controlled by a mode bit in a control register, set
by the hardware when exception processing begins. Addi­
tional exceptions cannot be taken while the Exception
Branch Queue: is in use, because there is no way to save or
recover the processor state.

Once the exception condition has been handled, the
original state of the processor must be restored. Faulty
instructions must be emulated in software and removed
from the Shadow IW. Non-issued instructions are left in
the Shadow TW. The Branch Queue and Rl Queue are
reloaded (if necessary). The rte instruction will restore
the IW from the Shadow IW, reenable exceptions, and
resume fetching instructions and issuing them from the
IW.

4. Exception Example

Figure 2 shows a section of a program as it may

Tag Status Instruction

2 Issued add rl,r2,r2

3 Complete xor r2,r3,r3

4 Issued mul r3,r4,r4

5 Issued and r4,r5,r5
6 Issued Id r5,ro,r6
7 None add ro,r7,r7

8 None xor r7,r8,r8

9 None add r8,r9,r9

Figure 3. Data dependency resolved.

Tag Status Instruction

4 Issued mul r3,r4,r4

5 Complete and r4,r5,r5

6 Page Fault Id r5,r6,rG

7 Issued add r6,r7,r7

8 Complete xor r7,r8,r8

9 Issued add r8,r9,r9
10 None mul r9,rlO,rlO

Figure 4. IW with exception condition.

Tag Status Instruction

4 Overflow mul r3,r4,r4

6 Page Fault Id r5,r6,r6

10 None mul r9,rlO,rlO

Figure 5. Ready for exception handling.

appear in the lW. At this point, the second instruction can't
issue until the top instruction completes (because of the
dependency on r2) and the rest must issue sequentially.
Figure 3 shows the state soon after that dependency is sat­
isfied. The top instruction has completed and been
removed, several additional instructions have been issued
(one has completed), and two new instructions have been
fetched and placed into the IW.

If the load instruction faults, exception processing
will take place. Figure 4 shows the state of the IW when
the fault is reported. Several instructions have already
completed and been removed, while others are still pend­
ing. In particular note that the add instruction with tag 7
will modify register r6, which was used by the faulty load
instruction. Figure 5 shows the state of the IW once all
outstanding instructions have either completed or faulted.
Notice that there is more than one faulty instruction now
in the IW, and the IW only contains faulty and non-issued
instructions, since all completed instructions have been
removed. The first faulty instruction in the IW is not the
instruction that first signaled an exception. In addition, the
add instruction which modified r6 has completed success­
fully, so the current value of r6 cannot be used to reissue
the load instruction. Not shown are the operands for the
faulty instructions, which are included in the reported sta­
tus.

5. Circuit Complexity

36

Field Bits Meaning

valid 1 slot is filled
tag 4 dispatch tag

address 30 instruction address
opcode 32 instruction opcode

wat 1 can be issued only at top of IW
single 1 inhibits instruction prefetching
issued 1 has been issued
status 8 completion status
argl 32 for fault recovery
arg2 32 for fault recovery

Figure 6. IW slot size.

The design of Fred is relatively straightforward. Most
of the complexity is in the Dispatch Unit. Data hazards are
resolved with a simple 3 I-bit scoreboard. Normal struc­
tural hazards do not require any additional scoreboarding
or-Control, since the flexibility of the micropipelines elimi­
nates the need for inserting artificial pipeline stalls. To pre­
vent deadlock, the Dispatch Unit must be aware of the
number of items in the RI Queue and Branch Queue, but
this can be done with a simple shift register.

The size of the Instruction Window may have the
largest impact on the circuitry needed for the exception
handling, since each IW slot requires a significant number
of bits. Figure 6 shows the bits needed for each of the IW
slots in the current VHDL implementation of Fred (some
of the entries relate to issues not covered in this paper).
The number of slots in the IW is arbitrary, but obviously
will have some effect on performance. A variety of
options exist which could reduce the complexity or size of
the processor circuitry. Some are discussed below.

5.1 Fewer Control Registers

The amount of circuitry needed could be reduced sig­
nificantly by eliminating the Shadow Instruction Window.
Saving the entire IW in a set of control registers at excep­
tion time roughly doubles the number of transistors
needed to implement the IW. Eliminating the Shadow IW
would be an important goal for a physical implementation.

This can be done by revising the dispatch logic such
that the IW is entirely disabled while the processor state is
being saved. The control registers used to access the
Shadow IW would actually access the IW itself. This
means that instructions are not tracked in any way, and
therefore must not cause exceptions. This is not an unrea­
sonable requirement for an exception-handling routine.

A second side effect is that the Rl Queue must not be
accessed while the IW is disabled. To prevent deadlock
and WAW hazards, the Dispatch Unit uses the IW to keep
track of the number of items in the Rl Queue, and to
scoreboard register rl. If the IW is disabled, this cannot
be done correctly. Therefore, a typical exception handler
would consist of four parts: 1) save the IW state while the
IW is disabled, 2) reenable the IW and save the Rl Queue
and Branch Queue contents, 3) reenable the Branch Queue
to possibly allow nested exceptions, and 4) continue with

nonnal exception processing.

5.2 Smaller IW Slots

Another contributor to the size of the IW is the num­
ber of bits needed for each slot, with the operands of faulty
instructions making up nearly half of the total. One alter­
native is to add some fonn of history buffer to maintain the
original register values. However, doing so would compli­
cate the completion logic without necessarily reducing the
size of the processor. Additionally, correctly reversing
operations on the Rl Queue is extremely difficult.

Another alternative is to change the way in which data
dependencies are detected. Because instructions are issued
in-order, a simple scoreboard model is all that is needed to
resolve register dependencies. Exceptions can violate
these in-order dependencies by effectively issuing out of
order. If the dispatch logic were revised such that instruc­
tions could issue while always avoiding WAW hazards,
then the register file contents would be sufficient to reissue
faulty instructions. This would also allow instructions to
be aborted if desired. By eliminating WAW hazards, the
instruction operands would no longer be needed in the IW,
reducing its size by nearly fifty percent. However, the
complexity of the dispatch logic would increase, since
detecting data dependencies in both directions is difficult,
and the way in which operands are obtained from the Reg­
ister File would also require alteration.

A more significant drawback would be the possible
reduction in program efficiency. The degree of parallelism
in most programs is not great [11], yet is enough that some
pipelining is possible. With WAW-safe dispatch, no two
concurrent instructions can use the same registers for
either source or destination. It is questionable whether typ­
ical programs have enough parallelism to maintain perfor­
mance under these conditions.

6. Conclusions

Precise exception methods commonly used in clocked
processors are of doubtful utility for self-timed processors.
Identifying a point when the total state of the machine is
known is not possible for a machine structured as a collec­
tion of concurrently operating self-timed processes. We
have described a method of providing functionally precise
exceptions for a self-timed, decoupled, pipelined com­
puter architecture with out-of-order instruction comple­
tion. This method involves the use of an Instruction
Window to keep track of the state of each issued instruc­
tion. When the instructions complete or fault, the IW is
updated to reflect their new status. When faults occur, fur­
ther instructions are not issued, pending instructions are
allowed to complete (or fault), and exception processing
begins. The state of the processor is recovered from the
various queues, and can be reloaded upon return from the
exception.

The complexity of the overall Fred architecture is
such that the exception requirements are nontrivial. How-

37

ever, the special circuitry required for exceptions is on the
same order as that needed for clocked processors of simi­
lar complexity. The required control logic is arguably less
complex than for globally synchronous processors, and is
well-suited to the asynchronous protocols used in self­
timed processors.

The Fred processor has been implemented in VHDL
using the precise exception model just described. All
exception cases function correctly, including memory
faults, interrupts, deadlock detection, and nested excep­
tions. The perfonnance effects of internal pipeline lengths
and execution times on the various functions, including
exception handling, are currently being investigated.

References

[1] Erik Brunvand. The NSR processor. In Proceedings of the
26th Annual Hawaii International Conference on System
Sciences, pages 42~35, Maui, Hawaii, January 1993.

[2] Alan L. Davis. Asynchronous advantages often cited and
NOT often cited. Distributed at the Async94 conference,
November 1994. Salt Lake City, Utah.

[3] Harry Dwyer and H. C. Torng. An out-of-order superscalar
processor with speCUlative execution and fast, precise inter­
rupts. In Proceedings of the 25th Annual International Sym­
posium on Microarchitecture, pages 272-281, December
1992.

[4] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods. A micropipelined ARM. In Proceedings of the VII
BanjfWorkshop: Asynchronous Hardware Design, Banff,
Canada, August 1993.

[5] William F. Richardson and Erik Brunvand. The NSR pro­
cessor prototype. Technical Report UUCS-92-029, Univer­
sity of Utah, August 1992. ftp: //ftp.cs.utah.edu/
techrepe.rts/1992/UUCS-92-029 .ps. z.

[6] William F. Richardson and Erik Brunvand. Fred; An archi­
tecture for a self-timed decoupled computer. Technical
Report UUCS-95-008, University of Utah, May 1995.
ftp://ft:p.cs.utah.edu/techreports/1995/UUCS-
95-008 .];.s. z.

[7] James E. Smith and Andrew R. Pleszkun. Implementing
precise interrupts in pipelined processors. IEEE Transac­
tions on Computers, 37(5):562-573, May 1988.

[8] Gurindar S. Sohi. Instruction issue logic for high-perfor­
mance, interruptible, multiple functional unit, pipelined
computers. IEEE Transactions on Computers, 39(3);349-
359, March 1990.

[9] Ivan Sutherland. Micropipelines. Communications of the
ACM, 32(6):720-738, 1989.

[10] H. C. Tomg and Martin Day. Interrupt handling for out-of­
order exec~ution processors. IEEE Transactions on Comput­
ers, 42(1):122-127, January 1993.

[11] David W. Wall. Limits of instruction-level parallelism.
WRL Technical Note TN-15, Digital Western Research
Laboratory, 100 Hamilton Avenue, Palo Alto, CA 94301,
December 1990. ftp: / /gatekeeper. dec. com/publ
DEC/WRL/research-reports/WRL-TN-15.ps.

[12] Wm. A. Wulf. The WM computer architecture. Computer
Architecture News, 16(1), March 1988.

