991 research outputs found

    The formation of magnetic depletions and flux annihilation due to reconnection in the heliosheath

    Full text link
    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant flux survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.This work has been supported by NASA Grand Challenge NNX14AIB0G, NASA awards NNX14AF42G, NNX13AE04G, and NNX13AE04G, and NASA contract 959203 from JPL to MIT. The simulations were performed at the National Energy Research Scientific Computing Center. We acknowledge fruitful discussions with Dr. Len Burlaga on the Voyager observations and with Dr. Obioma Ohia on outer heliosphere reconnection. This research benefited greatly from discussions held at the meetings of the Heliopause International Team Facing the Most Pressing Challenges to Our Understanding of the Heliosheath and its Outer Boundaries at the International Space Science Institute in Bern, Switzerland. (NNX14AIB0G - NASA; NNX14AF42G - NASA; NNX13AE04G - NASA; 959203 - NASA)Accepted manuscrip

    Analysis of a dry friction problem under small displacements: application to a bolted joint

    Get PDF
    This study presents an analysis of the problem of macroscopic contact of steel upon steel with dry friction, in the specific case of a bolted joint. The configurations of these types of joints result in very small displacements and interface sliding velocities. To understand how the system formed by the two surfaces in contact works, an experiment was carried out. The analysis of the results obtained made it possible to define the behavior of the system and to model the variations of the main parameters by original and continuous laws. These laws accurately correlate to all the results of the tests effectuated

    Collisionless hydrodynamics for 1D motion of inhomogeneous degenerate electron gases: equivalence of two recent descriptions

    Full text link
    Recently I. Tokatly and O. Pankratov (''TP'', Phys. Rev. B 60, 15550 (1999)) used velocity moments of a semiclassical kinetic equation to derive a hydrodynamic description of electron motion in a degenerate electron gas. Independently, the present authors (Theochem 501-502, 327 (2000)) used considerations arising from the Harmonic Potential Theorem (Phys. Rev. Lett. 73, 2244 (1994)) to generate a new form of high-frequency hydrodynamics for inhomogeneous degenerate electron gases (HPT-N3 hydrodynamics). We show here that TP hydrodynamics yields HPT-N3 hydrodynamics when linearized about a Thomas-Fermi groundstate with one-dimensional spatial inhomnogeneity.Comment: 17p

    Scanning laser Doppler vibrometry of the cranium when stimulated by a B71 bone transducer

    Get PDF
    Scanning laser Doppler vibrometry (LDV) has been used extensively to investigate the movement of the middle and inner ear, but has never been used to measure vibrations from a bone transducer travelling over the skin, subcutaneous tissue and cranium in a live subject. Using three scanning laser Doppler vibrometers we measured the displacement of the cranium in 3D in a live subject when stimulated by a B71 bone transducer placed 55 mm posterior to the external auditory canal. Four pure tones (250 Hz, 500 Hz, 1000 Hz, 2000 Hz) were presented separately via the bone transducer. The displacement of the scalp was imaged in four different areas (Ipsilateral to the bone transducer in the temporoparietal region, contralateral temporoparietal region, occipital region and vertex) and linked to the phase of stimulation. Measured scalp motion was consistent with expected displacement of the underlying cranium. Rigid-body motion was the dominant mode of vibration at 250 Hz. At 1000 Hz a mass-spring effect was seen. At 500 Hz there was a transition frequency between vibration as a rigid-body and as a mass-spring. Higher frequencies (2000 Hz) showed that wave transmission was the primary vibrational mode of sound transmission over the cranium. These results broadly support previous research studies but open up potential areas of interest in the investigation of differing skull resonance frequencies

    Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    Get PDF
    Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how they may change in the future, as well as to compare different feedback formalisms. Simple models such as that developed here also provide "workbenches" for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included in complex ESMs

    Modified differentials and basic cohomology for Riemannian foliations

    Full text link
    We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincar\'e duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad

    Correlation energy of a two-dimensional electron gas from static and dynamic exchange-correlation kernels

    Full text link
    We calculate the correlation energy of a two-dimensional homogeneous electron gas using several available approximations for the exchange-correlation kernel fxc(q,ω)f_{\rm xc}(q,\omega) entering the linear dielectric response of the system. As in the previous work of Lein {\it et al.} [Phys. Rev. B {\bf 67}, 13431 (2000)] on the three-dimensional electron gas, we give attention to the relative roles of the wave number and frequency dependence of the kernel and analyze the correlation energy in terms of contributions from the (q,iω)(q, i\omega) plane. We find that consistency of the kernel with the electron-pair distribution function is important and in this case the nonlocality of the kernel in time is of minor importance, as far as the correlation energy is concerned. We also show that, and explain why, the popular Adiabatic Local Density Approximation performs much better in the two-dimensional case than in the three-dimensional one.Comment: 9 Pages, 4 Figure
    corecore