3,179 research outputs found

    DNA Methylation of α-Synuclein Intron 1 Is Significantly Decreased in the Frontal Cortex of Parkinson’s Individuals with GBA1 Mutations

    Get PDF
    Parkinson’s disease (PD) is a common movement disorder, estimated to affect 4% of individuals by the age of 80. Mutations in the glucocerebrosidase 1 (GBA1) gene represent the most common genetic risk factor for PD, with at least 7–10% of non-Ashkenazi PD individuals carrying a GBA1 mutation (PD-GBA1). Although similar to idiopathic PD, the clinical presentation of PD-GBA1 includes a slightly younger age of onset, a higher incidence of neuropsychiatric symptoms, and a tendency to earlier, more prevalent and more significant cognitive impairment. The pathophysiological mechanisms underlying PD-GBA1 are incompletely understood, but, as in idiopathic PD, α-synuclein accumulation is thought to play a key role. It has been hypothesized that this overexpression of α-synuclein is caused by epigenetic modifications. In this paper, we analyze DNA methylation levels at 17 CpG sites located within intron 1 and the promoter of the α-synuclein (SNCA) gene in three different brain regions (frontal cortex, putamen and substantia nigra) in idiopathic PD, PD-GBA1 and elderly non-PD controls. In all three brain regions we find a tendency towards a decrease in DNA methylation within an eight CpG region of intron 1 in both idiopathic PD and PD-GBA1. The trend towards a reduction in DNA methylation was more pronounced in PD-GBA1, with a significant decrease in the frontal cortex. This suggests that PD-GBA1 and idiopathic PD have distinct epigenetic profiles, and highlights the importance of separating idiopathic PD and PD-GBA1 cases. This work also provides initial evidence that different genetic subtypes might exist within PD, each characterized by its own pathological mechanism. This may have important implications for how PD is diagnosed and treated

    Improving access to psychological therapy: Initial evaluation of two UK demonstration sites

    Get PDF
    Copyright © 2009 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Behaviour Research and Therapy, 2009, Vol. 47, Issue 11, pp. 910 – 920 DOI: http://dx.doi.org/10.1016/j.brat.2009.07.010Recently the UK Government announced an unprecedented, large-scale initiative for Improving Access to Psychological Therapies (IAPT) for depression and anxiety disorders. Prior to this development, the Department of Health established two pilot projects that aimed to collect valuable information to inform the national roll-out. Doncaster and Newham received additional funds to rapidly increase the availability of CBT-related interventions and to deploy them in new clinical services, operating on stepped-care principles, when appropriate. This article reports an evaluation of the new services (termed ‘demonstration sites’) during their first thirteen months of operation. A session-by-session outcome monitoring system achieved unusually high levels of pre to post-treatment data completeness. Large numbers of patients were treated, with low-intensity interventions (such as guided self-help) being particularly helpful for achieving high throughput. Clinical outcomes were broadly in line with expectation. 55–56% of patients who had attended at least twice (including the assessment interview) were classified as recovered when they left the services and 5% had improved their employment status. Treatment gains were largely maintained at 10 month follow-up. Opening the services to self-referral appeared to facilitate access for some groups that tend to be underrepresented in general practice referrals. Outcomes were comparable for the different ethnic groups who access the services. Issues for the further development of IAPT are discussed

    Learning to live with Dale's principle: ANNs with separate excitatory and inhibitory units

    Get PDF
    The units in artificial neural networks (ANNs) can be thought of as abstractions of biological neurons, and ANNs are increasingly used in neuroscience research. However, there are many important differences between ANN units and real neurons. One of the most notable is the absence of Dale's principle, which ensures that biological neurons are either exclusively excitatory or inhibitory. Dale's principle is typically left out of ANNs because its inclusion impairs learning. This is problematic, because one of the great advantages of ANNs for neuroscience research is their ability to learn complicated, realistic tasks. Here, by taking inspiration from feedforward inhibitory interneurons in the brain we show that we can develop ANNs with separate populations of excitatory and inhibitory units that learn just as well as standard ANNs. We call these networks Dale's ANNs (DANNs). We present two insights that enable DANNs to learn well: (1) DANNs are related to normalization schemes, and can be initialized such that the inhibition centres and standardizes the excitatory activity, (2) updates to inhibitory neuron parameters should be scaled using corrections based on the Fisher Information matrix. These results demonstrate how ANNs that respect Dale's principle can be built without sacrificing learning performance, which is important for future work using ANNs as models of the brain. The results may also have interesting implications for how inhibitory plasticity in the real brain operates

    Automatic extraction of actin networks in plants

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Public Library of Science via the DOI in this recordData Availability: The authors confirm that all data underlying the findings are fully available without restriction. The complete code for this paper is available on a GitHub repository at https://github.com/JordanHembrow5/DRAGoN.The actin cytoskeleton is essential in eukaryotes, not least in the plant kingdom where it plays key roles in cell expansion, cell division, environmental responses and pathogen defence. Yet, the precise structure-function relationships of properties of the actin network in plants are still to be unravelled, including details of how the network configuration depends upon cell type, tissue type and developmental stage. Part of the problem lies in the difficulty of extracting high-quality, quantitative measures of actin network features from microscopy data. To address this problem, we have developed DRAGoN, a novel image analysis algorithm that can automatically extract the actin network across a range of cell types, providing seventeen different quantitative measures that describe the network at a local level. Using this algorithm, we then studied a number of cases in Arabidopsis thaliana, including several different tissues, a variety of actin-affected mutants, and cells responding to powdery mildew. In many cases we found statistically-significant differences in actin network properties. In addition to these results, our algorithm is designed to be easily adaptable to other tissues, mutants and plants, and so will be a valuable asset for the study and future biological engineering of the actin cytoskeleton in globally-important crops.Biotechnology and Biological Sciences Research Council (BBSRC)Wellcome TrustMedical Research Council (MRC

    Ion channel noise shapes the electrical activity of endocrine cells

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: All relevant data are within the manuscript and its Supporting Information files.Endocrine cells in the pituitary gland typically display either spiking or bursting electrical activity, which is related to the level of hormone secretion. Recent work, which combines mathematical modelling with dynamic clamp experiments, suggests the difference is due to the presence or absence of a few large-conductance potassium channels. Since endocrine cells only contain a handful of these channels, it is likely that stochastic effects play an important role in the pattern of electrical activity. Here, for the first time, we explicitly determine the effect of such noise by studying a mathematical model that includes the realistic noisy opening and closing of ion channels. This allows us to investigate how noise affects the electrical activity, examine the origin of spiking and bursting, and determine which channel types are responsible for the greatest noise. Further, for the first time, we address the role of cell size in endocrine cell electrical activity, finding that larger cells typically display more bursting, while the smallest cells almost always only exhibit spiking behaviour.Medical Research Council (MRC)Engineering and Physical Sciences Research Council (EPSRC)Wellcome Trus

    Effects of storage temperature on the change in size of Calliphora vicina larvae during preservation in 80% ethanol

    Get PDF
    The size of immature blowflies is a common measure to estimate the minimum time between death and the discovery of a corpse, also known as the minimum post-mortem interval. This paper investigates the effects of preservation, in 80% ethanol, on the length and weight of first instar, second instar, feeding third instar, and post-feeding third instar Calliphora vicina larvae, at three different storage temperatures. For each larval stage, the length of larvae was recorded after 0 h, 3 h, 6 h, 9 h, 12 h, 24 h, 72 h, 7 days, 14 days, 30 days, 91 days, 182 days, 273 days, and 365 days of storage in 80% ethanol, at −25°C, 6°C and 24°C. Storage temperature had no statistically significant effect on the change in larval length and weight for all larval stages, but larval length and weight were significantly affected by the duration of preservation for first, second, and feeding third instar larvae, but not for post-feeding larvae. Generally, first and second instar larvae reduced in size over time, while feeding third instar larvae increased slightly in size, and post-feeding larvae did not change in size over time. The length of blowfly larvae preserved in 80% ethanol is not affected by constant storage temperatures between −25°C and +24°C, but we recommend that forensic entomologists should use the models provided to correct for changes in larval length that do become apparent over time.Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Organelle Membrane Extensions in Mammalian Cells

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Availability Statement: All datasets generated for this study are included in the article.Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.Biotechnology & Biological Sciences Research Council (BBSRC)Wellcome TrustMedical Research Council (MRC

    The Overall Coefficient of the Two-loop Superstring Amplitude Using Pure Spinors

    Get PDF
    Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulae force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out.Comment: 29 pages, harvmac TeX. v2: add reference

    Hear it through the grapevine

    Get PDF
    Dominic M Bowman and the ECN Committee share their perspective of the RAS Early Career Network's first career event: postdoctoral career advice from the communit
    • …
    corecore