3,414 research outputs found

    The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant?

    Get PDF
    Glucagon-like peptide-1 (GLP-1) is both a peripherally expressed incretin and a centrally active neuropeptide. Brain derived GLP-1, produced in preproglucagon (PPG) neurons located in the nucleus of the solitary tract (NTS) and projecting to numerous brain regions, is ideally placed to activate central GLP-1 receptors in a range of autonomic control areas. In vivo analysis of central GLP-1 using GLP-1 receptor antagonists has demonstrated the control of a range of feeding responses mediated by GLP-1 receptor activation. Recent advances enabling identification and targeting of the neurons in the NTS has specifically implicated PPG neurons at the core of GLP-1 dependent central and peripheral control for short-term and long-term energy balance

    Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain.

    Get PDF
    © 2015 The Authors.Objective: Although Glucagon-like peptide 1 is a key regulator of energy metabolism and food intake, the precise location of GLP-1 receptors and the physiological relevance of certain populations is debatable. This study investigated the novel GLP-1R-Cre mouse as a functional tool to address this question. Methods: Mice expressing Cre-recombinase under the Glp1r promoter were crossed with either a ROSA26 eYFP or tdRFP reporter strain to identify GLP-1R expressing cells. Patch-clamp recordings were performed on tdRFP-positive neurons in acute coronal brain slices from adult mice and selective targeting of GLP-1R cells in vivo was achieved using viral gene delivery. Results: Large numbers of eYFP or tdRFP immunoreactive cells were found in the circumventricular organs, amygdala, hypothalamic nuclei and the ventrolateral medulla. Smaller numbers were observed in the nucleus of the solitary tract and the thalamic paraventricular nucleus. However, tdRFP positive neurons were also found in areas without preproglucagon-neuronal projections like hippocampus and cortex. GLP-1R cells were not immunoreactive for GFAP or parvalbumin although some were catecholaminergic. GLP-1R expression was confirmed in whole-cell recordings from BNST, hippocampus and PVN, where 100 nM GLP-1 elicited a reversible inward current or depolarisation. Additionally, a unilateral stereotaxic injection of a cre-dependent AAV into the PVN demonstrated that tdRFP-positive cells express cre-recombinase facilitating virally-mediated eYFP expression. Conclusions: This study is a comprehensive description and phenotypic analysis of GLP-1R expression in the mouse CNS. We demonstrate the power of combining the GLP-1R-CRE mouse with a virus to generate a selective molecular handle enabling future in vivo investigation as to their physiological importance

    Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community (article)

    Get PDF
    This is the final version. Available from the Ecological Society of America via the DOI in this record. The dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.1963Climate change has caused widespread shifts in species’ phenology, but the consequences for population and community dynamics remain unclear because of uncertainty regarding the species-specific drivers of phenology and abundance, and the implications for synchrony among interacting species. Here, we develop a statistical model to quantify inter-annual variation in phenology and abundance over an environmental gradient, and use it to identify potential drivers of phenology and abundance in co-occurring species. We fit the model to counts of 10 butterfly species with single annual generations over a mountain elevation gradient, as an exemplar system in which temporally limited availability of biotic resources and favorable abiotic conditions impose narrow windows of seasonal activity. We estimate parameters describing changes in abundance, and the peak time and duration of the flight period, over ten years (2004–2013) and across twenty sample locations (930–2,050 m) in central Spain. We also use the model outputs to investigate relationships of phenology and abundance with temperature and rainfall. Annual shifts in phenology were remarkably consistent among species, typically showing earlier flight periods during years with warm conditions in March or May–June. In contrast, inter-annual variation in relative abundance was more variable among species, and generally less well associated with climatic conditions. Nevertheless, warmer temperatures in June were associated with increased relative population growth in three species, and five species had increased relative population growth in years with earlier flight periods. These results suggest that broadly coherent interspecific changes to phenology could help to maintain temporal synchrony in community dynamics under climate change, but that the relative composition of communities may vary due to interspecific inconsistency in population dynamic responses to climate change. However, it may still be possible to predict abundance change for species based on a robust understanding of relationships between their population dynamics and phenology, and the environmental drivers of both.Royal SocietyNatural Environment Research Counci

    Interventions for involving older patients with multimorbidity in decision‐making during primary care consultations (protocol)

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this recordThis is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To explore the effectiveness of interventions delivered with the aim of involving older patients with multimorbidity in decision-making about their health care during primary care consultations

    GLP-1 action in the mouse bed nucleus of the stria terminalis

    Get PDF
    Glucagon-like peptide-1 (GLP-1) injected into the brain reduces food intake. Similarly, activation of preproglucagon (PPG) cells in the hindbrain which synthesize GLP-1, reduces food intake. However, it is far from clear whether this happens because of satiety, nausea, reduced reward, or even stress. Here we explore the role of the bed nucleus of the stria terminalis (BNST), an area involved in feeding control as well as stress responses, in GLP-1 responses. Using cre-expressing mice we visualized projections of NTS PPG neurons and GLP-1R-expressing BNST cells with AAV-driven Channelrhodopsin-YFP expression. The BNST displayed many varicose YFP+ PPG axons in the ventral and less in the dorsal regions. Mice which express RFP in GLP-1R neurons had RFP+ cells throughout the BNST with the highest density in the dorsal part, suggesting that PPG neuron-derived GLP-1 acts in the BNST. Indeed, injection of GLP-1 into the BNST reduced chow intake during the dark phase, whereas injection of the GLP-1 receptor antagonist Ex9 increased feeding. BNST-specific GLP-1-induced food suppression was less effective in mice on high fat (HF, 60%) diet, and Ex9 had no effect. Restraint stress-induced hypophagia was attenuated by BNST Ex9 treatment, further supporting a role for endogenous brain GLP-1. Finally, whole-cell patch clamp recordings of RFP+ BNST neurons demonstrated that GLP-1 elicited either a depolarizing or hyperpolarizing reversible response that was of opposite polarity to that under dopamine. Our data support a physiological role for BNST GLP-1R in feeding, and suggest complex cellular responses to GLP-1 in this nucleus

    Brain activation during face perception: evidence of a developmental change.

    Get PDF
    Behavioral studies suggest that children under age 10 process faces using a piecemeal strategy based on individual distinctive facial features, whereas older children use a configural strategy based on the spatial relations among the face's features. The purpose of this study was to determine whether activation of the fusiform gyrus, which is involved in face processing in adults, is greater during face processing in older children (12-14 years) than in younger children (8-10 years). Functional MRI scans were obtained while children viewed faces and houses. A developmental change was observed: Older children, but not younger children, showed significantly more activation in bilateral fusiform gyri for faces than for houses. Activation in the fusiform gyrus correlated significantly with age and with a behavioral measure of configural face processing. Regions believed to be involved in processing basic facial features were activated in both younger and older children. Some evidence was also observed for greater activation for houses versus faces for the older children than for the younger children, suggesting that processing of these two stimulus types becomes more differentiated as children age. The current results provide biological insight into changes in visual processing of faces that occur with normal development

    Experimental Pathways towards Developing a Rotavirus Reverse Genetics System: Synthetic Full Length Rotavirus ssRNAs Are Neither Infectious nor Translated in Permissive Cells

    Get PDF
    At present the ability to create rationally engineered mutant rotaviruses is limited because of the lack of a tractable helper virus-free reverse genetics system. Using the cell culture adapted bovine RV RF strain (G6P6 [1]), we have attempted to recover infectious RV by co-transfecting in vitro transcribed ssRNAs which are identical in sequence to the positive sense strand of each of the 11 dsRNA genomic segments of the RF strain. The RNAs were produced either from cDNAs cloned by a target sequence-independent procedure, or from purified double layered RV particles (DLPs). We have validated their translational function by in vitro synthesis of 35S-labelled proteins in rabbit reticulocyte lysates; all 11 proteins encoded by the RV genome were expressed. Transfection experiments with DLP- or cDNA-derived ssRNAs suggested that the RNAs do not act independently as mRNAs for protein synthesis, once delivered into various mammalian cell lines, and exhibit cytotoxicity. Transfected RNAs were not infectious since a viral cytopathic effect was not observed after infection of MA104 cells with lysates from transfected cells. By contrast, an engineered mRNA encoding eGFP was expressed when transfected under identical conditions into the same cell lines. Co-expression of plasmids encoding NSP2 and NSP5 using a fowlpox T7 polymerase recombinant virus revealed viroplasm-like structure formation, but this did not enable the translation of transfected RV ssRNAs. Attempts to recover RV from ssRNAs transcribed intracellularly from transfected cDNAs were also unsuccessful and suggested that these RNAs were also not translated, in contrast to successful translation from a transfected cDNA encoding an eGFP mRNA

    Arterial Spin Labeling MRI in Carotid Stenosis: Arterial Transit Artifacts May Predict Symptoms

    Get PDF
    Background: Stenosis of the internal carotid artery has a higher risk for stroke. Many investigations have focused on structure and plaque composition as signs of plaque vulnerability, but few studies have analyzed hemodynamic changes in the brain as a risk factor. Purpose: To use 3-T MRI methods including contrast material–enhanced MR angiography, carotid plaque imaging, and arterial spin labeling (ASL) to identify imaging parameters that best help distinguish between asymptomatic and symptomatic participants with carotid stenosis. Materials and Methods: Participants with carotid stenosis from two ongoing prospective studies who underwent ASL and carotid plaque imaging with use of 3-T MRI in the same setting from 2014 to 2018 were studied. Participants were assessed clinically for recent symptoms (transient ischemic attack or stroke) and divided equally into symptomatic and nonsymptomatic groups. Reviewers were blinded to the symptomatic status and MRI scans were analyzed for the degree of stenosis, plaque surface structure, presence of intraplaque hemorrhage (IPH), circle of Willis collaterals, and the presence and severity of arterial transit artifacts (ATAs) at ASL imaging. MRI findings were correlated with symptomatic status by using t tests and the Fisher exact test. Results: A total of 44 participants (mean age, 71 years 6 10 [standard deviation]; 31 men) were evaluated. ATAs were seen only in participants with greater than 70% stenosis (16 of 28 patients; P , .001) and were associated with absence of anterior communicating artery (13 of 16 patients; P = .003). There was no association between history of symptoms and degree of stenosis (27 patients with 70% stenosis and 17 patients with ,70%; P = .54), IPH (12 patients with IPH and 32 patients without IPH; P = .31), and plaque surface structure (17 patients with irregular or ulcerated plaque and 27 with smooth plaque; P = .54). Participants with ATAs (n = 16) were more likely to be symptomatic than were those without ATAs (n = 28) (P = .004). Symptomatic status also was associated with the severity of ATAs (P = .002). Conclusion: Arterial transit artifacts were the only factor associated with recent ischemic symptoms in participants with carotid stenosis. The degree of stenosis, plaque ulceration, and intraplaque hemorrhage were not associated with symptomatic statu

    Visual attention and autistic behavior in infants with fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the leading known inherited cause of intellectual disability and the most common known biological cause of autism. Approximately 25% to 50% of males with FXS meet full diagnostic criteria for autism. Despite the high comorbidity between FXS and autism and the ability to diagnose FXS prenatally or at birth, no studies have examined indicators of autism in infants with FXS. The current study focused on indices of visual attention, one of the earliest and most robust behavioral indicators of autism in idiopathic (non-FXS) autism. Analyses revealed lower HR variability, shallower HR decelerations, and prolonged look durations in 12-month old infants with FXS that were correlated with severity of autistic behavior but not mental age
    corecore