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Glucagon-like peptide-1 (GLP-1) is both a peripherally

expressed incretin and a centrally active neuropeptide. Brain

derived GLP-1, produced in preproglucagon (PPG) neurons

located in the nucleus of the solitary tract (NTS) and projecting

to numerous brain regions, is ideally placed to activate central

GLP-1 receptors in a range of autonomic control areas. In vivo

analysis of central GLP-1 using GLP-1 receptor antagonists

has demonstrated the control of a range of feeding responses

mediated by GLP-1 receptor activation. Recent advances

enabling identification and targeting of the neurons in the NTS

has specifically implicated PPG neurons at the core of GLP-1

dependent central and peripheral control for short-term and

long-term energy balance.

Addresses

Department of Neuroscience, Physiology and Pharmacology, University

College London, London WC1E 6BT, UK

Corresponding author: Trapp, Stefan (s.trapp@ucl.ac.uk)

Current Opinion in Pharmacology 2013, 13:964–969

This review comes from a themed issue on Endocrine and metabolic

diseases

Edited by Frank Reimann and Fiona M Gribble

For a complete overview see the Issue and the Editorial

Available online 24th September 2013

1471-4892/$ – see front matter, # 2013 Elsevier Ltd. All rights

reserved.

http://dx.doi.org/10.1016/j.coph.2013.09.006

Introduction
‘Gut hormones’ have increasingly been implicated in

brain function [1,2]. One such example is glucagon-like

peptide-1 (GLP-1), which in addition to being gut-

derived, is also synthesised by preproglucagon (PPG)

neurones in the brain. These are located primarily in a

discrete region of the lower brainstem [3]. This review

focuses on the recent advances in our understanding of

the physiological significance of this cell population.

The vast majority of studies examining central GLP-1

effects have been performed on rodents and con-

sequently we will focus on these. Although a small

number of studies on the GLP-1 system have highlighted

differences between mouse and rat [4,5] for most aspects

they appear to be equivalent, and in this review we have

treated studies on either as comparable. Furthermore,

given that the amino acid sequence of GLP-1 is con-

served throughout mammalian species [6] and that the
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distribution of PPG neurons in the non-human primate

Macaca mulatta [7] is strikingly similar to that in rodents

we make the assumption that most of these findings have

clear relevance for GLP-1 action in man.

At present it is still controversial as to how the central

GLP-1 system is linked to peripheral post-prandial GLP-

1 release and whether gut-derived GLP-1 can enter the

brain to a sufficient extent to activate central GLP-1

receptors (reviewed in [3,8,9]). Here, we will not address

these issues, but consider the GLP-1 producing neurons

as an independent cell population and examine the

evidence as to the feasibility of the hypothesis that this

cell population is the principal physiological source of

endogenous GLP-1 interacting with GLP-1 receptors

within the CNS. For this to be the case, there has to

be anatomical evidence that the distribution of PPG cell

axons and GLP-1 release sites matches the distribution of

GLP-1 receptors in brain, functional evidence of

endogenous release of GLP-1 within the CNS, and proof

that inhibition or destruction of these PPG neurons pre-

vents the central effects attributed to GLP-1. We

examine these points in sequence.

Anatomical correlation between GLP-1 receptor

expression and the distribution and projections of PPG

neurons in the brain

It has been known for more than 20 years that GLP-1 is

synthesised in mammalian brain [10–13]. Most published

reports analysing the distribution of PPG neurons are

from rat using either immunocytochemistry for GLP-1 or

GLP-2 [3,10,14–16] or in situ hybridisation [17] to localise

these neurons and their axon terminals. These studies

demonstrated that PPG neurons are non-adrenergic

neurons with their cell bodies located exclusively in

the caudal nucleus of the solitary tract (NTS), the caudal

medullary reticular formation and the olfactory bulb

[14,17]. They also demonstrated a widespread projection

pattern for these neurons with the highest density of

terminals observed in the paraventricular nucleus

(PVN) and the dorsomedial hypothalamus (DMH)

[14,15,18]. Merchenthaler and colleagues [17] also con-

cluded that all GLP-1 terminals outside the olfactory bulb

must originate from the brainstem nuclei, because the

olfactory bulb PPG neurons were located periglomerular,

and were thus local interneurons. Two recent studies

targeting the rostral forebrain confirmed by injection of

Fluoro-Gold or RetroBeads into the nucleus accumbens

(NAc) that GLP-1 immunoreactive neurons in the NTS

project to this area [19��,20��].
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Recently, Llewellyn-Smith and co-workers [21�,22�] have

revisited the expression pattern of PPG neurons with the

use of a transgenic mouse (PPG-YFP mouse) that

expresses YFP under the control of the glucagon promo-

ter [23�]. These mice show strong YFP fluorescence

throughout the entire cytoplasm of the GLP-1 neurons

and thus allowed the researchers to map the PPG neurons

in mouse with unprecedented precision, showing not only

cell bodies and terminals, but also the entire dendritic

tree and axons [21�,22�]. These studies demonstrated

mouse PPG cell bodies in the caudal NTS, the inter-

mediate reticular formation mediodorsal of the nucleus

ambiguus and along the midline ventral of the hypoglos-

sal nucleus. Additionally, these mice have PPG neurons

in the lumbar sacral spinal cord [24] and the granule cell

layer of the olfactory bulb [25]. As has been suggested for

the olfactory bulb PPG neurons in rat, these appear to be

granule cells and thus local interneurons. Consequently,

it is expected also in mouse, that all PPG cell projections,

which are primarily to autonomic control areas, originate

from brainstem PPG neurons. Tracing studies in rat thus

far suggest no functional segregation between NTS and

reticular PPG neurons [15,18].

In the absence of reliable antibodies for the GLP-1 re-

ceptor, the targets for GLP-1 in the brain have been

mapped in rat either by identifying GLP-1 binding sites

[26] or by in situ hybridisation for GLP-1 receptor mRNA

[17]. GLP-1 receptors are found throughout the entire

rostrocaudal extent of the CNS, from the olfactory bulb

down to lamina 5–10 in the sacral spinal cord [17].

However, notable exceptions are cerebral cortex and

cerebellum which are devoid of GLP-1 receptors. Inter-

estingly, GLP-1 neurons do not project to these brain

structures in rat or mouse [10,14,22�]. This good corre-

lation between the expression of GLP-1 receptors and the

presence of fibres from GLP-1-expressing neurons is also

seen at a regional level; for example, within hypothalamus

the arcuate nucleus receives many GLP-1-positive fibres

and expresses high levels of GLP-1 receptor, whereas the

neighbouring ventromedial nucleus has low levels of both

[17,22�]. Similarly, Manton et al. [24] have recently

reported that GLP-1 axons are found throughout the

entire rostrocaudal extent of the ventral spinal cord in

the PPG-YFP mouse with the highest density of term-

inals in lamina X and the intermediolateral nucleus

(IML). These data correlate very well to the GLP-1

receptor expression pattern described by Merchenthaler

et al. [17] in rat.

However, whilst Merchenthaler et al. report a moderate

level of GLP-1 receptors within the caudal hippo-

campus of rat, no innervation of this area is seen in

mouse [22�]. Given that effects of exogenous GLP-1

injection into the hippocampus have been observed

[27,28] this raises the question of whether these recep-

tors are activated under physiological conditions, and if
www.sciencedirect.com 
so where would the GLP-1 originate from? One possible

origin could be microglia involved in the response to

inflammation of the brain. It has been reported that

activated microglia express GLP-1, at least in culture

[29]. The physiological relevance of this GLP-1 expres-

sion, though, remains to be established.

In conclusion, these anatomical findings suggest that

projections from PPG neurons are appropriately placed

to elicit effects on the vast majority of GLP-1 receptors

expressed in the CNS.

Central application of GLP-1 receptor antagonists to

explore the role of endogenous GLP-1 in brain

Most studies to date addressing the physiological role of

central GLP-1 receptors have employed intracerebroven-

tricular (i.c.v.) injections of high concentrations of GLP-1

or a GLP-1 receptor agonist. These studies have revealed

a plethora of responses, such as suppression of food

intake, improved blood glucose levels, nausea, increased

taste aversion, alterations in blood pressure and heart rate,

hypothermia, neuroprotection and effects on learning and

memory [15,28,30–35].

Whilst these studies demarcate the potential scope for

effects of endogenous GLP-1 released from PPG

neurons, the question remains, whether some of the

effects observed are due to supraphysiological concen-

trations of GLP-1 producing a pattern of GLP-1 receptor

activation that would not occur under physiological con-

ditions. This question is best addressed by the injection

of a GLP-1 receptor antagonist into brain in the absence

of any exogenous GLP-1 or GLP-1 analogue.

In their landmark paper, more than 15 years ago, Turton

and colleagues [36��] demonstrated that not only does

i.c.v. injection of GLP-1 produce a reduction in food

intake in rat but also that i.c.v. injection of the truncated

exendin fragment (9–39; Ex9), a GLP-1 receptor antagon-

ist, strongly increased food intake and body weight in

satiated animals whilst having no effect on starved rats

[36��,37] (see also [38]). This demonstrated not only a

physiological role for endogenous GLP-1, but also

showed that endogenous release varies with the animal’s

feeding state.

Several GLP-1 receptor antagonists [39] have been used

to explore the role of endogenous GLP-1 in brain. Most of

these studies have focused on food intake, showing that

central administration of GLP-1 receptor antagonists can

cause increased feeding in stressed animals, attenuate c-

fos expression in the brainstem and decrease LiCl-

induced anorexia and stress hormone levels [40–43].

Others have shown reduced glucose tolerance [44�] or

impaired the insulin-dependent suppression of hepatic

glucose production [45] when central GLP-1 receptors

were blocked. However, whilst these studies indicate a
Current Opinion in Pharmacology 2013, 13:964–969
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physiological role for endogenous GLP-1 in brain, i.c.v.

injection of these antagonists has precluded dissection of

the specific neuronal populations involved. To overcome

this limitation, several recent papers used site-specific

injections into the brain parenchyma to allow the exam-

ination of specific brain nuclei [19��,20��,38,46,47��].

Delineating ascending pathways: injection of

antagonists into forebrain sites

Most of these studies have focused on the dissection of

GLP-1 effects on food intake. Schick et al. demonstrated

that lateral hypothalamic microinjections of Ex9 signifi-

cantly augmented food intake in satiated rats only [38].

More recent studies were designed to dissect suppression

of metabolically driven food intake from conditioned

taste aversion and from reward system driven appetite.

These papers explored the influence of the nucleus

accumbens (NAc) and the ventral tegmental area

(VTA) known to be involved with reward and motivation

[19��,20��,46,48] (Figure 1). Specific targeting of the NAc

core rather than the shell region with Ex9 was shown to

increase food intake up to 2 hours after animals entered

the dark phase of the circadian cycle [19��]. Similarly, a

unilateral injection of Ex9 into the VTA increased high

fat diet intake in rats at 3 and 6 hours post-injection

[20��]. Further analysis of the effects of GLP-1R block-

ade in the NAc core on the intake of palatable food

suggested that GLP-1 receptor activation in the NAc

affects meal size rather than meal frequency [46] whereas

the opposite was observed for GLP-1 receptor activation

in the hindbrain [47��].

Descending pathways: injection of antagonists into

brainstem

Early evidence that hindbrain GLP-1 receptors are

involved in different aspects of food intake than those

in the hypothalamus was provided by Grill et al. [49] who

showed that lipopolysaccharide (LPS) anorexia is alle-

viated by blocking GLP-1 receptors accessible from the

4th, but not the 3rd, ventricle. Subsequently, it was shown

that both 4th ventricular and local caudal NTS delivery of

Ex9 increased food intake in satiated rats, indicating a

role for hindbrain GLP-1 receptors in ‘metabolic’ food

intake [47��]. The same study also demonstrated that the

reduction in food intake caused by gastric distension is

reversed by 4th ventricular Ex9, but not when caused by

duodenal nutrient infusion [47��]. These findings suggest

that it is unlikely to be duodenally released GLP-1

entering the brainstem that activates the GLP-1 recep-

tors, but rather electrical signals (presumably vagal) from

the stomach that activate PPG neurons in the NTS.

These in turn release GLP-1 locally, leading to the

observed effects (Figure 1).

At present, little is known about which cell types in the

lower brainstem express GLP-1 receptors, and thus what

downstream pathways are likely to be involved. A recent
Current Opinion in Pharmacology 2013, 13:964–969 
study has identified some of the cell types receiving close

appositions from PPG axons within the brainstem [21�].
These include about 30% of cholinergic dorsal vagal

neurons, a similar proportion of catecholaminergic A1/

C1 and A2/C2 neurons, and the majority of serotonergic

neurons in the raphe pallidus and the parapyramidal tract.

These cell populations would provide both descending

and ascending projections that could potentially account

for effects on food intake, thermoregulation, blood pres-

sure, heart rate, insulin release, among others.

What inputs do GLP-1 neurons receive?

Until the development of the PPG-YFP mouse by

Reimann and colleagues [23�], PPG neurons could only

be identified post hoc by immunocytochemistry. This

limited functional analysis of this cell population to the

use of immunoreactivity to c-fos or equivalent markers of

neuronal activation [15,50,51]. Such studies demon-

strated that PPG neurons were activated by gastric dis-

tension [51], leptin [52], LiCl and oxytocin [53], placing

the PPG neurons at the core of central GLP-1 effects

observed in relation to these stimuli.

The PPG-YFP mouse allowed identification of PPG

neurons in living tissue and in the first study that directly

recorded the electrical activity of GLP-1-expressing cells,

Hisadome and colleagues discovered that leptin directly

depolarises these neurones in the nucleus of the solitary

tract (NTS) and that, whilst these neurons do not express

GLP-1 receptors, at least a proportion of PPG neurons

receive monosynaptic input from the solitary tract [54��]
(i.e. vagal afferent fibres). These results further supported

the notion that gut-derived GLP-1 would act in the

periphery, rather than directly on PPG neurons in order

to elicit central GLP-1 release (Figure 1). A recent study

on human subjects that had undergone truncal vagotomy

further supports this hypothesis [55]. Subsequently, Hisa-

dome et al. reported that CCK and noradrenaline

increased the activity of GLP-1-expressing neurons by

enhancing glutamatergic drive [56] (Figure 1). These

results demonstrated that GLP-1 neuronal activity is

modulated by both long-term and short-term satiety

signals. It now remains to be established whether there

is a separation of these neurons into discrete subpopu-

lations that responds to either short-term or long-term

signals, and similarly whether the projection targets for

the individual PPG neurons correlate with the specific

inputs they receive.

Can we interfere with the function of GLP-1 neurons in

vivo, and what are the consequences?

Finally, in order to unequivocally determine the import-

ance of the central GLP-1 system, it needs to be com-

pletely separated from the peripheral system. There are

two key questions to be answered. Firstly, are central

GLP-1 receptors only accessible for CNS derived GLP-1,

and secondly, do the hindbrain GLP-1 neurons fulfil this
www.sciencedirect.com
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Figure 1

Gastric distensionVagal Afferents

PPG Neurones

L-Cells GLP-1 

Leptin GABA 

Glutamate  Catecholamine

5HT 

Sympathetic
Preganglionic

Neurones
IML CAA  

NAcDMHARC PVNVTA

Food intake

Glucose
Control 

CCK

Vagal Efferents

DMNX

BRAINSTEM

FOREBRAIN

Current Opinion in Pharmacology

Physiologically relevant inputs to and projections from brainstem PPG neurons. Brainstem PPG neurons receive inputs (blue) related to short-term and

long-term energy status. Inputs include electrical satiety signals via the vagal nerve from the stomach and gut, hormonal signals like CCK from the gut,

or leptin from adipose tissue. Outputs (red) from these neurons are directed towards various forebrain sites with emphasis on food intake and glucose

control. Local and descending outputs from these neurons travel to dorsal vagal efferent neurons, serotonergic (5-HT) neurons and catecholaminergic

neurons in the NTS and ventrolateral medulla. These outputs might be involved in the regulation of blood glucose in the case of vagal neurons and

thermoregulation for 5-HT neurons. Additionally, there are strong direct projections from PPG neurons to sympathetic preganglionic neurons in the

central autonomic area (CAA) and the intermediolateral cell column (IML) in the spinal cord. ARC, arcuate nucleus; VTA, ventral tegmental area; DMH,

dorsomedial hypothalamus; PVN, paraventricular nucleus; NAc, nucleus accumbens; DMNX, dorsal motor nucleus of the vagus; CCK, cholecystokinin.
role? The pharmacological studies employing the central

injection of GLP-1 receptor antagonists address these

questions only partially, because whilst they demonstrate

the action of endogenous GLP-1, they cannot rule out the

possibility that gut-derived GLP-1 is responsible for the

observed effects on central GLP-1 receptors. Similarly,

the global knockout of either the glucagon gene, or the

GLP-1 receptor gene, affects both central and peripheral

systems. Additionally, such a genetic approach is prone to

developmental compensation. To circumvent such pro-

blems, Barrera et al. [57��] employed RNA interference,

delivered by stereotaxic injection of lentivirus into the

NTS, to knock down GLP-1 expression. With this

approach they achieved a reduction of preproglucagon

mRNA levels by 50% in NTS and by 30% in the PPG cell

terminals in PVN. They observed hyperphagia and

weight gain compared to control animals that received

injections of scrambled shRNA. However, these controls
www.sciencedirect.com 
only regained preoperative weight 28 days after surgery.

Nevertheless, these data indicate that endogenous GLP-

1 derived from PPG cells has a physiological role in the

regulation of energy balance and it is experiments like

these that will hopefully give us a more complete and

detailed picture of the physiological importance of the

PPG neurons over the coming years.

Conclusions
We suggest that the effects of neuropeptide GLP-1 (released

by PPG neurons) are distinct from the effects of incretin
GLP-1 (released by enteroendocrine cells) and that the

PPG neurons constitute a central signalling network that

integrates peripheral and central signals for both long and

short term nutritional and digestional status. GLP-1

neurons might produce an output signal to feeding and

autonomic circuits which optimises digestion and assim-

ilation of nutrients and regulates calorific intake.
Current Opinion in Pharmacology 2013, 13:964–969
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