98 research outputs found

    Rust resistance in faba bean (Vicia faba L.) : status and strategies for improvement

    Get PDF
    Faba bean (Vicia faba L.) is an important grain legume used as food and feed. Its production is threatened by abiotic stresses and diseases, of which rust (Uromyces viciae-fabae) is one of the major diseases in East and North Africa, China and the northern grain growing region of Australia. Understanding the genetic and physiological mechanisms of rust resistance in faba bean is in an early phase. The presence of seedling and adult plant resistance genes has been observed. The resistance most frequently utilised in applied plant breeding is race-specific, where the interaction between resistance genes in the host and avirulence genes in the pathogen confers resistance. The main drawback of using race-specific resistance is lack of durability, when deployed singly. Slow rusting or partial resistance, controlled by multiple genes of small effect, is generally non-race specific, so it can be more durable. We present the current knowledge of host resistance and pathogen diversity and propose rational breeding approaches aided with molecular markers to breed durable rust resistance in faba bean.Peer reviewe

    Genetic Contribution of Emmer Wheat (Triticum dicoccon Schrank) to Heat Tolerance of Bread Wheat

    Get PDF
    Rising global temperatures cause substantial yield losses in many wheat growing environments. Emmer wheat (Triticum dicoccon Schrank), one of the first wheat species domesticated, carries significant variation for tolerance to abiotic stresses. This study identified new genetic variability for high-temperature tolerance in hexaploid progeny derived from crosses with emmer wheat. Eight hexaploid and 11 tetraploid parents were recombined in 43 backcross combinations using the hexaploid as the recurrent parent. A total of 537 emmer-based hexaploid lines were developed by producing approximately 10 doubled haploids on hexaploid like BC1F1 progeny and subsequent selection for hexaploid morphology. These materials and 17 commercial cultivars and hexaploid recurrent parents were evaluated under two times of sowing in the field, in 2014–2016. The materials were genotyped using a 90K SNP platform and these data were used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for key agronomical traits including grain yield, TKW and screenings was observed. Many of the emmer derived lines showed improved performance under heat stress (delayed sowing) compared with parents and commercial cultivars. Emmer derived lines were the highest yielding material in both sowing dates. The emmer wheat parent contributed between 1 and 44% of the genome of the derived lines. Emmer derived lines with superior kernel weight and yield generally had a greater genetic contribution from the emmer parent compared to those with lower trait values. The study showed that new genetic variation for key traits such as yield, kernel weight and screenings can be introduced to hexaploid wheat from emmer wheat. These genetic resources should be explored more systematically to stabilize grain yield and quality in a changing climate

    Wheat photosystem II heat tolerance responds dynamically to short- and long-term warming

    Get PDF
    Wheat photosynthetic heat tolerance can be characterized using minimal chlorophyll fuorescence to quantify the critical temperature (Tcrit) above which incipient damage to the photosynthetic machinery occurs. We investigated intraspecies variation and plasticity of wheat Tcrit under elevated temperature in feld and controlled-environment experiments, and assessed whether intraspecies variation mirrored interspecifc patterns of global heat tolerance. In the feld, wheat Tcrit varied diurnally—declining from noon through to sunrise—and increased with phenological de�velopment. Under controlled conditions, heat stress (36 °C) drove a rapid (within 2 h) rise in Tcrit that peaked after 3–4 d. The peak in Tcrit indicated an upper limit to PSII heat tolerance. A global dataset [comprising 183 Triticum and wild wheat (Aegilops) species] generated from the current study and a systematic literature review showed that wheat leaf Tcrit varied by up to 20 °C (roughly two-thirds of reported global plant interspecies variation). However, unlike global patterns of interspecies Tcrit variation that have been linked to latitude of genotype origin, intraspecifc variation in wheat Tcrit was unrelated to that. Overall, the observed genotypic variation and plasticity of wheat Tcrit suggest that this trait could be useful in high-throughput phenotyping of wheat photosynthetic heat toleranc

    Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat

    Get PDF
    High temperatures account for major wheat yield losses annually and, as the climate continues to warm, these losses will probably increase. Both photosynthesis and respiration are the main determinants of carbon balance and growth in wheat, and both are sensitive to high temperature. Wheat is able to acclimate photosynthesis and respiration to high temperature, and thus reduce the negative affects on growth. The capacity to adjust these processes to better suit warmer conditions stands as a potential avenue toward reducing heat-induced yield losses in the future. However, much remains to be learnt about such phenomena. Here, we review what is known of high temperature tolerance in wheat, focusing predominantly on the high temperature responses of photosynthesis and respiration. We also identify the many unknowns that surround this area, particularly with respect to the high temperature response of wheat respiration and the consequences of this for growth and yield. It is concluded that further investigation into the response of photosynthesis and respiration to high temperature could present several methods of improving wheat high temperature tolerance. Extending our knowledge in this area could also lead to more immediate benefits, such as the enhancement of current crop models

    Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat

    Get PDF
    Climate change and future warming will significantly affect crop yield. The capacity of crops to dynamically adjust physiological processes (i.e. acclimate) to warming might improve overall performance. Understanding and quantifying the degree of acclimation in field crops could ensure better parameterization of crop and Earth System models and predictions of crop performance. We hypothesized that for field-grown wheat, when measured at a common temperature (25°C), crops grown under warmer conditions would exhibit acclimation, leading to enhanced crop performance and yield. Acclimation was defined as: (i) decreased rates of net photosynthesis at 25°C (A25) coupled with lower maximum carboxylation capacity (Vcmax25); (ii) reduced leaf dark respiration at 25°C (both in terms of O2 consumption, Rdark_O225; and CO2 efflux, Rdark_CO225); and (iii) lower Rdark_CO225:Vcmax25. Field experiments were conducted over two seasons with 20 wheat genotypes, sown at three different planting dates, to test these hypotheses. Leaf-level CO2 based traits (A25, Rdark_CO225, and Vcmax25) did not show the classic acclimation responses that we hypothesized; by contrast, the hypothesized changes in Rdark_O2 were observed. These findings have implications for predictive crop models that assume similar temperature response among these physiological processes, and for predictions of crop performance in a future warmer world

    Identification of discriminant factors after exposure of maize and common bean plantlets to abiotic stresses

    Get PDF
    Adverse environmental conditions limit crop yield and better understanding of plant response to stress will assist the development of more tolerant cultivars. Maize and common bean plantlets were evaluated under salinity, high temperature, drought and waterlogged conditions to identify biochemical markers which could be useful for rapid identification of putative stress tolerant plants. The levels of phenolics (free, cell wall-linked, total), aldehydes including malondialdehyde and chlorophylls (a, b, total) were measured on stressed plantlets. Only two indicators were statistically non-significant: chlorophyll b in maize plantlets stressed with sodium chloride and malondialdehyde content in drought stressed maize. The most remarkable effects of abiotic stresses can be summarized as follows: (i) salinity increased levels of free phenolics in maize plantlets and chlorophylls (a, b, total) in common bean; (ii) high temperature (40 °C) elevated levels of chlorophylls (a, b, total) in maize but decreased chlorophylls (a, b, total) and free phenolics in common bean; (iii) drought increased phenolics and decreased chlorophylls (a, b, total) in maize and increased chlorophyll pigments (a, b, total) in common bean; (iv) waterlogging increased free phenolics and decreased chlorophylls (a, b, total) in maize and increased chlorophyll (a, total) in common bean. Free phenolics and chlorophylls, especially a, were the most responsive indicators to stress and can, therefore, be considered putative biochemical markers for abiotic stress tolerance in maize and common bean. The use of Fisher s linear discriminant analysis to differentiate non-stressed and stressed plants in breeding programs is also a novel aspect of this report. Fisher s linear discriminant functions classified correctly 100% of non-stressed or stressed originally grouped plants.Hernández, L.; Loyola González, O.; Valle, B.; Martínez, J.; Díaz López, L.; Aragón, C.; Vicente Meana, Ó.... (2015). Identification of discriminant factors after exposure of maize and common bean plantlets to abiotic stresses. NOTULAE BOTANICAE HORTI AGROBOTANICI. 43(2):589-598. doi:10.15835/nbha4329916S58959843

    Wheat photosystem II heat tolerance: evidence for genotype‐by‐environment interactions

    Get PDF
    High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosynthetic heat tolerance is Tcrit – the critical temperature at which incipient damage to photosystem II (PSII) occurs. This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interactions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Australia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic model. Mean daily growth temperature in the month preceding anthesis was the most influential environmental driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requiring different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat performance under high temperature, we identified genotypes superior to commercial cultivars commonly grown by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance

    Crop Updates 2000 - Cereals part 1

    Get PDF
    This session covers eleven papers from different authors: PLENARY PAPERS 1. New Wheat for a Secure, Sustainable Future, Timothy G. Reeves, Sanjaya Rajaram, Maarten van Ginkel, Richard Trethowan, Hans-Joachim Braun, and Kelly Cassaday, International Maize and Wheat Improvement Centre (CIMMYT) 2. Managing Cereal Rusts - a National Perspective, R.A. McIntosh, University of Sydney Plant Breeding Institute, New South Wales 3. Managing Cereal Rusts in 2000 - a regional imperative, R. Loughman, Agriculture Western Australia 4. Is nutrition the answer to wheat after canola problems?Ross Brennan1, Bill Bowden1, Mike Bolland1, Zed Rengel2 and David Isbister2 1 Agriculture Western Australia 2University of Western Australia 5. Improved Sandplain Cropping Systems by Controlled Traffic, Dr Paul Blackwell, Agriculture Western Australia 6. Raised bed farming for improved cropping of waterlogged soils, Derk Bakker, Greg Hamilton, David Houlbrooke, Cliff Spann and Doug Rowe, Agriculture Western Australia 7. Banded Urea increased wheat yields, Patrick Gethin, Stephen Loss, Frank Boetel, and Tim O’Dea, CSBP futurefarm 8. Flexi N is as effective as Urea on wheat and canola, Frank Boetel, Stephen Loss, Patrick Gethin, and Tim O’Dea CSBP futurefarm 9. Why potassium may reduce cereal leaf disease, Noeleen Edwards, Agriculture Western Australia 10, Trace elements, Wayne Pluske CSBP futurefarm, and Ross BrennanAgriculture Western Australia 11. Historical Nutrient Balance at Paddock and Whole Farm scales for typical wheatbelt farms in the Dowerin - Wongan Hills area, M.T.F. Wong, K. Wittwer and H. Zhang Precision Agriculture Research Group, CSIRO Land and Wate
    corecore