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SUMMARY

High temperature stress inhibits photosynthesis and threatens wheat production. One measure of photosyn-

thetic heat tolerance is Tcrit – the critical temperature at which incipient damage to photosystem II (PSII) occurs.

This trait could be improved in wheat by exploiting genetic variation and genotype-by-environment interac-

tions (GEI). Flag leaf Tcrit of 54 wheat genotypes was evaluated in 12 thermal environments over 3 years in Aus-

tralia, and analysed using linear mixed models to assess GEI effects. Nine of the 12 environments had

significant genetic effects and highly variable broad-sense heritability (H2 ranged from 0.15 to 0.75). Tcrit GEI

was variable, with 55.6% of the genetic variance across environments accounted for by the factor analytic

model. Mean daily growth temperature in the month preceding anthesis was the most influential environmen-

tal driver of Tcrit GEI, suggesting biochemical, physiological and structural adjustments to temperature requir-

ing different durations to manifest. These changes help protect or repair PSII upon exposure to heat stress, and

may improve carbon assimilation under high temperature. To support breeding efforts to improve wheat per-

formance under high temperature, we identified genotypes superior to commercial cultivars commonly grown

by farmers, and demonstrated potential for developing genotypes with greater photosynthetic heat tolerance.

Keywords: chlorophyll fluorescence, factor analytic models, heat stress, multi-environment trial, photosyn-

thesis, photosynthetic thermal tolerance, Triticum aestivum.

INTRODUCTION

Photosynthesis is an important determinant of plant bio-

mass and crop yield. High temperature (warmer nights and

days, and heatwaves) can inhibit photosynthesis, resulting

in reduced crop yield. Global warming has been correlated

with worldwide wheat (Triticum aestivum L.) yield losses

(Asseng et al., 2015, 2017; Zhao et al., 2017). Additionally,

models have predicted wheat yield decreases of up to 6%

per 1°C warming (Zhao et al., 2017). In Australia, wheat

yield loss due to high temperature is estimated to cost $1.1
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billion per annum (GRDC, 2018) and, considering Australia

accounts for approximately 11% of global wheat exports

(ABARES, 2021; Qureshi et al., 2013), these losses can

potentially affect global food security. To better adapt Aus-

tralian wheat production to warming it is crucial to identify

genotypes with traits – such as photosystem II (PSII) heat

tolerance – that confer heat tolerance and are easy to phe-

notype so that these can be incorporated into breeding

programmes.

Heat tolerance of PSII is often inferred from measuring

leaf chlorophyll-a fluorescence (Geange et al., 2020) – light

emitted by chloroplasts due to changes in PSII complexes

embedded within the thylakoid membrane (Maxwell &

Johnson, 2000). A commonly used chlorophyll-a fluores-

cence parameter is the temperature at which the maximum

quantum efficiency of PSII (FV/FM) – defined as the ratio of

variable fluorescence (difference between the basal

chlorophyll-a fluorescence, F0, and maximum chlorophyll-a

fluorescence, FM) to maximum fluorescence – is reduced

by 50% (i.e. T50 of FV/FM). FV/FM has been applied in mass

screening of wheat cultivars for high temperature tolerance

(Azam et al., 2015; Sharma et al., 2012, 2017). Another

chlorophyll-a fluorescence measure for assessing PSII heat

tolerance is the critical temperature of PSII function (Tcrit of

F0, henceforth Tcrit). Tcrit is determined as the temperature

at which F0 rises abruptly as leaves are warmed, and signi-

fies the onset of damage to PSII (Berry & Bjorkman, 1980;

Schreiber & Berry, 1977). Tcrit is widely used in ecological

studies (Hüve et al., 2006; Knight & Ackerly, 2002; O’Sulli-

van et al., 2017; Zhu et al., 2018) and recently applied in

agricultural studies (Posch et al., 2022). As well as being a

robust measure of thermal damage to PSII function similar

to T50 of FV/FM (Lin, 2012; Marias et al., 2017; Perez & Fee-

ley, 2020), the recent development of high-throughput phe-

notyping tools for measuring Tcrit (Arnold et al., 2021;

Posch et al., 2022) has made it possible to include Tcrit

measurements in the large-scale trials typical of breeding

programmes.

Tcrit responds to changes in growth environment condi-

tions and varies among species (Lancaster & Humphreys,

2020; O’Sullivan et al., 2017; Rekika et al., 1997; Zhu et al.,

2018). Genetic gains in breeding for high temperature tol-

erance could be improved with information from experi-

ments that account for how Tcrit is affected by both

genotype and environment, as well as their interaction.

Genotype-by-environment interactions (GEI) characterise

the differential response of genotypes to changes in the

environment, and are a common impediment to the selec-

tion of superior genotypes. GEI is the primary reason why

breeders conduct multi-environment trials (METs; a set of

connected trials across multiple years and environments).

Incorporating measurements of Tcrit in METs can provide

useful information on yield stability and adaptability of

genotypes to defined environment types (or the target

population of environments; Comstock, 1977). The designs

of METs are often highly unbalanced, and analysis of these

data using traditional methods such as ANOVA are typically

inadequate (Smith et al., 2015). A more flexible and supe-

rior approach for MET analysis uses factor analytic (FA)

models (Smith et al., 2001). By combining FA models with

graphical tools, such as latent regression plots and heat-

maps of the estimated genetic correlation matrix across

environments (Smith et al., 2015; Smith & Cullis, 2018),

GEI can be explored and superior genotypes identified (i.e.

those with high performance and stability across the target

population of environments). Additionally, loadings from

FA models can be linked with environmental covariates to

identify important environmental drivers of Tcrit GEI. This

approach has been used to explore trends in species per-

formance across environments in both plant and animal

studies, including for wheat yield (Trethowan et al., 2018),

lodging tolerance in spring wheat (Dreccer et al., 2020),

sorghum [Sorghum bicolor (L.) Moench] biomass under

drought (Oliveira et al., 2020), and body weight at harvest

of the farmed fish species rainbow trout (Onchorynchus

mykiss; Sae-Lim et al., 2014).

We conducted METs comprising 12 thermal environ-

ments (across 3 years) in Australia with a total of 54 wheat

genotypes (Table S1), and assessed the GEI effect on PSII

heat tolerance in wheat. These wheat genotypes were cho-

sen from an extensive national wheat breeding programme

for their diversity in heat tolerance. The genotypes included

an elite subset of heat-tolerant, semi-dwarf germplasm well

adapted to the Australian grain belt, and commercial culti-

vars commonly grown by farmers. The research objectives

were to: (i) quantify genetic, environmental and GEI effects

on Tcrit; (ii) identify superior wheat genotypes (i.e. with con-

sistently high and stable Tcrit) across a range of Australian

wheat growing conditions; and (iii) identify the major envi-

ronmental drivers of wheat Tcrit GEI.

RESULTS

Conditions of growth environments and single-

environment analyses

The MET dataset comprised five field and four controlled

environments. These were used to assess GEI for wheat

PSII heat tolerance (Tcrit) among the 54 genotypes (Table

S1). The METs represented a wide range of growth envi-

ronments in terms of temperature, relative humidity and

photoperiod (Table 1). Across the METs, mean tempera-

ture from sowing to anthesis (when Tcrit was determined)

ranged from 9.9 to 17.1°C, and average daily maximum

temperature at anthesis ranged from 18.8 to 28.1°C. Mean

relative humidity was lowest at Narrabri TOS 2 (37.5%) and

highest at Barraport West TOS 1 (73.1%). Photoperiod var-

ied almost twofold between sowing and measurement of

Tcrit at anthesis.
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The initial MET dataset comprised 12 thermal environ-

ments but, for the final MET analysis, the three environ-

ments in Dingwall, Victoria were excluded because of a

lack of significant genetic effects. When testing the genetic

effects for the Dingwall trials, we found that there was

insufficient evidence to reject the null hypothesis that there

is no difference between genotype means, based on the

results from the Wald tests. In our case, this means that

these environments will not contribute any useful informa-

tion to understanding the genetic variability in Tcrit, or how

this variability is influenced by environments (genotype by

environment interaction). The models fitted to account for

variability in each of the environments included in the final

MET analysis can be found in Table S5. The lowest and

highest mean Tcrit were 43.1°C (SIM-C2) and 46.4°C

(Barraport West TOS 3), respectively, with variation in Tcrit

across the nine environments ranging from 40.2 to 49.2°C
(Table 2). There were genetic variances (ranging from 0.11

to 0.54) and residual variances (ranging from 0.12 to 1.40)

between environments. Heritability varied considerably

among environments (Table 2), being low in the field trials

(H2 = 0.15–0.25), and moderate to high in the simulated

environments (H2 = 0.43–0.75; Table 2).

MET analysis

A summary of the diagonal variance and FA models fitted

for the Tcrit genetic variance is presented in Table 3. The

lowest Akaike Information Criterion (AIC) was observed for

the FA1 model (FA model of order 1) with 76 parameters,

which only accounted for 42% of the genetic variance

Table 1 Growing period and growth conditions for each environment included in the MET analysis of wheat Tcrit

Environment1
Environment
ID

Growing period (sowing
to anthesis)2

Growing period (sowing to anthesis)3

Average 3-day
maximum
temperature
at sampling (°C)

Mean
temperature
(°C)

Mean relative
humidity (%)

Photoperiod
(h)

Barraport West, VIC TOS 1 VIC-TOS 1 09 May–05 October 2018 9.9 73.5 1574 23.4
Barraport West, VIC TOS 2 VIC-TOS 2 01 June–19 October 2018 10.4 72.0 1228 23.4
Barraport West, VIC TOS 3 VIC-TOS 3 03 July–01 November 2018 11.5 66.9 1382 27.7
Narrabri, NSW TOS 1 NSW-TOS 1 17 May–14 September 2019 13.1 45.6 1279 22.3
Narrabri, NSW TOS 2 NSW-TOS 1 15 July–19 October 2019 14.3 37.5 1104 28.1
Simulated cool season 1 SIM-C1 103 (77) days4 12.9 70.8 1007 20.1
Simulated cool season 2 SIM-C2 104 (78) days 12.0 66.7 1019 18.8
Simulated warm season 1 SIM-W1 83 (57) days 17.0 65.3 800 22.8
Simulated warm season 2 SIM-W2 84 (58) days 17.1 67.2 812 23.1

1TOS 1, 2 and 3 indicates time of sowing 1, 2 and 3, respectively; VIC, Victoria; NSW, New South Wales.
2Anthesis refers to when about 50% of plants were between early and late flowering (Zadoks growth scale between 59 and 70; Zadoks
et al., 1974).
3Mean environmental conditions for the simulated environments do not include the period prior to when plants were transferred to the
growth capsules for the desired simulated growth conditions.
4Values in parenthesis indicate the actual period plants were treated to the simulated growing conditions.

Table 2 Estimates of wheat Tcrit means for each environment and estimates of their genetic and residual variances, and broad-sense heri-
tability from the diagonal genetic variance model of the MET analysis

Environment1
Environment
ID n genotypes Mean (� SE)(°C) Range(°C)

Genetic
variance (σg2)

Residual
variance (σe2) Heritability

Barraport West, VIC TOS 1 VIC-TOS 1 20 45.0 � 0.3 41.8–47.4 0.32 1.24 0.18
Barraport West, VIC TOS 2 VIC-TOS 2 20 46.3 � 0.2 43.9–48.6 0.22 0.57 0.22
Barraport West VIC TOS 3 VIC-TOS 3 20 46.4 � 0.2 43.8–49.2 0.54 1.08 0.24
Narrabri, NSW TOS 1 NSW-TOS 1 24 45.7 � 0.3 41.9–48.4 0.18 0.81 0.25
Narrabri, NSW TOS 2 NSW-TOS 1 23 46.2 � 0.3 43.2–48.9 0.11 1.36 0.15
Simulated cool season 1 SIM-C1 50 43.6 � 0.2 42.2–45.5 0.20 0.12 0.74
Simulated cool season 2 SIM-C2 50 43.1 � 0.1 40.2–44.9 0.19 0.39 0.43
Simulated warm season 1 SIM-W1 50 43.6 � 0.2 41.2–45.5 0.17 0.20 0.62
Simulated warm season 2 SIM-W2 50 43.3 � 0.1 41.0–45.2 0.26 0.15 0.75

The diagonal genetic variance model is a baseline model that assumes independence of genetic effects between environments (analogous
to analysing each environment separately).
1TOS 1, 2 and 3 indicates time of sowing 1, 2 and 3, respectively; VIC, Victoria; NSW, New South Wales.
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(% VAF). A marginally higher AIC was observed for the FA2

with 81 parameters, resulting in 56% VAF. In the absence

of a consensus of parsimonious model choice based on

the AIC and seeking a higher % VAF, we took a holistic

assessment of the magnitude of the GEI and changes in

heat-maps of the genetic correlations between environ-

ments for Tcrit. Based on these we chose the FA2 model as

our preferred model from which to generate predictions.

The FA2 was not significantly different from either the FA1

or FA5 models based on the log-likelihood ratio test (data

not shown); however, the FA2 model captured a satisfac-

tory level of genetic variance for most environments, with

only Barraport West TOS 3 having a % VAF less than 50%

(Table 4). The first factor (Λ1) of the FA2 model explained

50–86% of the variance for all environments, except Barra-

port West TOS 3 (0.1%) and SIM-W1 (44.9%). The first fac-

tor loadings were all positive and on a relatively similar

scale. However, the % VAF by the second factor of the FA2

model for most environments was low (Λ2, mostly less

than 20%), and primarily contrasted three of the simulated

environments and Barraport West TOS 1 with the other

five environments (Table 4).

Figure 1 presents a combination of a dendrogram of the

dissimilarity matrix and a heat-map of the genetic correla-

tion matrix of Tcrit for the FA2 model. This shows low to

high genetic correlations between environments, indicat-

ing substantial GEI. There was little correlation between

the warmest environment in Victoria (Barraport West TOS

3) and the other environments, suggesting high GEI. By

contrast, correlations were higher among the other eight

environments – with the highest correlation observed

between Narrabri TOS 2 and SIM-C1 (Figure 1). The clus-

tering of environments in the dendrogram informed the

ordering of environments in the genetic correlation matrix.

With Barraport West TOS 3 separate, there were two clus-

ters of environments with dissimilarity measures less than

0.43. Cluster 1 comprised the coolest environment in Victo-

ria (Barraport West TOS 1) and the two warm simulated

environments (SIM-W1 and SIM-W2), and cluster 2 com-

prised the remaining five environments excluding Barra-

port TOS 3.

Selection of genotypes with consistently high Tcrit

(performance and stability) across environments

Genotypes were ranked based on eBLUPs of overall perfor-

mance (OP) and root mean square deviation (RMSD) – a

measure of their sensitivity to changes in environment.

The calculation of OP is based on the first factor, while the

calculation of RMSD is based on all factors other than the

first (Smith & Cullis, 2018), which for our FA2 model is the

second factor. Genotypes 75, 173 and 2454 were ranked

among the top three in terms of OP for Tcrit, and had OP

scores of 0.64, 0.52 and 0.59 respectively (Figure 2; Table

S6). By contrast, the bottom-ranked three genotypes were

1517, 1752 and 2062 with OP scores of −0.71, −0.59 and

−0.49, respectively. Only two of the seven commercial cul-

tivars had a better than average OP, of which Ventura had

the highest OP, ranking eighth overall with an OP of 0.32.

In addition, Ventura was the least sensitive to change in

environment (i.e. had the most stable Tcrit across

Table 3 Genetic variance models, total number of variance param-
eters, AIC, residual log-likelihood (loglik) and percentage variance
accounted for (% VAF) of the diagonal variance model and FA
models of increasing order fitted to the genetic effects for the
wheat Tcrit MET dataset

Model n parameters AIC loglik % VAF

Diagonal 67 690 −278
FA1 76 655 −252 42.2
FA2 81 656 −247 55.6
FA3 87 662 −244 64.8
FA4 90 665 −243 95.0
FA5 95 677 −242 95.3

The FA models are denoted by FAn (a FA model of order n).
AIC, Akaike Information Criterion; FA, factor analytic.

Table 4 REML estimates of rotated factor loadings (first factor, Λ1; and second factor, Λ2) and percentage variance accounted for (% VAF)
from the FA2 model fitted to the wheat Tcrit genetic effects

Environment Environment ID

Rotated factor loadings % VAF

Λ1 Λ2 Λ1 Λ2 Λ1+ Λ2

Barraport West TOS 1 VIC-TOS 1 0.463 −0.086 62.9 2.2 65.1
Barraport West TOS 2 VIC-TOS 2 0.367 0.158 50.9 9.5 60.3
Barraport West TOS 3 VIC-TOS 3 0.022 0.159 0.1 4.7 4.8
Narrabri TOS 1 NSW-TOS 1 0.308 0.034 52.4 0.6 53.1
Narrabri TOS 2 NSW-TOS 1 0.214 0.098 82.8 17.2 100.0
Simulated cool season 1 SIM-C1 0.414 0.164 86.4 13.6 100.0
Simulated cool season 2 SIM-C2 0.364 −0.002 70.5 0.0 70.5
Simulated warm season 1 SIM-W1 0.276 −0.306 44.9 55.1 100.0
Simulated warm season 2 SIM-W2 0.394 −0.091 58.6 3.1 61.7

TOS 1, 2 and 3 indicates time of sowing 1, 2 and 3, respectively; VIC, Victoria; NSW, New South Wales.
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environments) with an RMSD of 0.01 (Table S6). Apart

from Ventura, Suntop was the only commercial cultivar

with a better than average OP, ranking 22nd overall, but it

was also the second most sensitive genotype to change in

environment (RMSD = 0.275; Figure 2). These results sug-

gest that there are many genotypes with both greater Tcrit

and similar ability to adapt to environmental changes,

compared with current commercial cultivars in the germ-

plasm available to Australian wheat breeders.

Correlation of rotated factor loadings with environmental

covariates

The main environmental drivers of Tcrit GEI were identified

through correlations of factor loadings with environmental

covariates of interest (Table 5). Spearman’s rank correla-

tions (ρ) were significant for correlations between the first

factor loadings and mean daily temperatures (cf ρ = −0.48
to –0.67 with r = −0.50 to −0.82 for 1–30 days before mea-

surement; DBM), and between the second factor loadings

and photoperiod (cf ρ = 0.59 to 0.68 with r = −0.59 to 0.60

for 1–30 DBM). There were also significant correlations for

vapour pressure deficit, solar radiation and photothermal

quotient. The Spearman’s rank correlations showed strong

correlations between mean temperature, relative humidity

and vapour pressure deficit assessed between sowing and

measurement of Tcrit, with the first factor loadings

(Table 5). The directions of correlations between factor

loadings and environmental covariates were mostly the

same for temperature, vapour pressure deficit, solar radia-

tion and photoperiod, and opposite to that observed for

relative humidity (Table 5). These results indicated that all

measured environmental variables potentially influenced

Tcrit GEI, and overall mean growth temperature was the

most important. When we focused on temperature as the

main driver of Tcrit GEI and analysed correlations for speci-

fic times [i.e. daytime, night time, around noon (0900–
1500 h) or 24-h (mean daily)], mean daily temperature was,

in most cases, the strongest driver of Tcrit GEI (Table S7).

DISCUSSION

Wheat breeders aiming to incorporate PSII heat tolerance

in their cultivar improvement programmes require critical

evaluation of GEI effects on this trait. This is the first report

to quantify Tcrit GEI. Here we show genetic variance and

Figure 1. Genetic correlation matrix for wheat Tcrit

for nine environments, ordered by agglomerative

hierarchical clustering.

A scale for the genetic correlation is depicted by the

colour scale on the right, with a positive and perfect

genetic correlation between environments indicated

by 1, and a perfect and negative correlation indi-

cated by –1. Estimated correlation coefficients for

pairs of environments are indicated within the cells.

The nine environments were from field trials in Vic-

toria [Barraport West TOS 1 (VIC TOS 1), Barraport

West TOS 2 (VIC-TOS 2) and Barraport West TOS 3

(VIC-TOS 3)] and New South Wales [Narrabri TOS 1

(NSW-TOS 1) and Narrabri TOS 2 (NSW TOS 2)], as

well as simulated wheat growing seasons in Can-

berra [simulated cool season 1 (SIM-C1), simulated

cool season 2 (SIM-C2), simulated warm season 1

(SIM-W1) and simulated cool season 2 (SIM-W2)].

� 2022 The Authors.
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Figure 2. Best linear unbiased predictions of overall performance (OP) versus root mean square deviation (RMSD; a measure of sensitivity of OP across environ-

ments) for photosynthetic heat tolerance (Tcrit) of 54 wheat genotypes, evaluated in nine environments.

Seven commercial cultivars commonly grown by farmers are labelled alongside the highest and lowest ranked four genotypes (according to OP).

Table 5 Spearman’s rank correlation coefficients (ρ) for correlations between the rotated factor loadings (first factor, Λ1; and second factor,
Λ2) of the FA2 model and environmental covariates for wheat Tcrit

Growth period
Mean daily Total daily

Growth period

Temperature
Relative
humidity

Vapour
pressure deficit Photoperiod Solar radiation

Photothermal
quotient

Λ1 Λ2 Λ1 Λ2 Λ1 Λ2 Λ1 Λ2 Λ1 Λ2 Λ1 Λ2

1 DBM1 −0.67* 0.05 0.43 −0.03 −0.48* 0.08 −0.30 0.68* −0.72** 0.38 −0.47 0.57*
3 DBM −0.34 0.05 0.37 −0.12 −0.48* 0.23 −0.13 0.60* −0.42 0.40 −0.29 0.31
7 DBM −0.48* 0.13 0.30 −0.50* −0.43 0.18 −0.27 0.68* −0.34 0.53 −0.10 0.38
10 DBM −0.63* 0.28 0.30 −0.50* −0.46 0.22 −0.27 0.68* −0.32 0.57 0.10 0.37
20 DBM −0.65* 0.38 0.48* −0.10 −0.48* 0.25 −0.32 0.60* −0.30 0.53 0.23 0.39
30 DBM −0.67* −0.05 0.52* −0.09 −0.48* 0.25 −0.32 0.60* −0.37 0.55 0.37 0.36
Sowing to measurement −0.67* −0.05 0.77** 0.13 −0.47* −0.08 −0.02 0.35 −0.40 −0.23 −0.17 0.58*

DBM, days before measurement.
1Day before measurement of Tcrit. * and ** indicates significance at P ≤ 0.05 and P ≤ 0.01, respectively. In bold are the highest correlation of
environmental variables with the first rotated factor loadings for each defined growth period.

� 2022 The Authors.
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highly variable heritability for wheat Tcrit (Table 2), as well

as significant Tcrit GEI (Figure 1; Tables 3 and 4). We identi-

fied mean daily growth temperature – especially during the

30 days prior to anthesis – as the most likely environmen-

tal driver of Tcrit GEI (Table 5). Interestingly, this period

prior to anthesis coincides with rapid spike development

(Calderini et al., 2001; Guo et al., 2018), which increases

demand for photosynthate. We also identified genotypes

consistently superior to commercial cultivars in terms of

OP in Tcrit (Figure 2; Table S6), thus demonstrating inher-

ent potential in the germplasm available to breeders for

developing genotypes with greater PSII heat tolerance.

Genetic variance in wheat PSII heat tolerance

Plant breeding for increased stress tolerance and produc-

tivity requires the introduction of new and relevant genetic

variation, which is easier to source from elite germplasm

pre-adapted to the target environment than from exotic

sources (Dwivedi et al., 2016). Most genotypes used in this

study were an elite subset of heat-tolerant, semi-dwarf

germplasm well adapted to the Australian grain belt. The

magnitude of genetic variation in wheat Tcrit in the set of

genotypes tested reflected the diversity of germplasm

sources and breeding histories. Most genotypes either

originated from high-temperature environments or were

selected for heat tolerance under high-temperature condi-

tions in Syria, Sudan, Mexico, India and Australia. In these

environments, mean growing season and annual maxi-

mum temperatures span 16.3–27.7°C and 22.2–36.5°C,
respectively. For wheat, a predominantly temperate crop,

these environments and temperatures allowed for identifi-

cation of elite heat-tolerant germplasm. Genetic variation

among some of the genotypes used in this study was

introduced by targeted crosses between adapted cultivars

and heat-tolerant Mexican hexaploid landraces and/or

crosses to emmer wheat (Triticum dicoccon Schrank) – a

heat-tolerant tetraploid – followed by a backcross to the

elite adapted cultivar (see Notes in Table S1). Emmer

wheat is the progenitor of most cultivated durum wheat,

and shows significant variation for heat stress tolerance

(Nevo, 2014; Ullah et al., 2018). A recent Australian study

(Ullah et al., 2018), examining genetic variability for high-

temperature tolerance among hexaploid progenies derived

from crosses with emmer wheat, reported that the emmer

wheat parents contributed 1–44% of the genome of the

derived lines, and that this diversity significantly improved

the heat tolerance of the hexaploid materials.

The large genetic variation in wheat Tcrit reported in this

paper indicates significant intraspecies variation that could

be exploited in breeding. Similar to ectotherms and non-

crop plants, this intraspecies variation in heat tolerance

might buffer heat stress via increased thermal safety mar-

gins (Araújo et al., 2013; Herrando-Pérez et al., 2019; O’Sul-

livan et al., 2017; Sunday et al., 2011). Our results show a

gradient (i.e. intraspecies variation) in Tcrit across the 54

wheat genotypes (Figure 2). Some genotypes (e.g. 75, 173

and 2454) could be categorised as high Tcrit, while others

(e.g. genotypes 2062, 1752 and 1517) could be classed as

low Tcrit relative to the commercial cultivars. That some

genotypes had a consistently higher and more stable Tcrit

compared with most of the commercial cultivars used in

this study indicates potential for significant genetic gains

in heat tolerance.

The general understanding of interspecific variation in

PSII heat tolerance and links between Tcrit and environ-

mental temperature is mostly shaped by data from studies

of mostly woody, non-crop species (Lancaster & Hum-

phreys, 2020; O’Sullivan et al., 2017; Zhu et al., 2018). One

example is the assumption that higher heat tolerance pro-

motes fitness/performance in hotter environments (Araújo

et al., 2013). However, Perez and Feeley (2020) indicated

that species with higher PSII heat tolerances could be more

vulnerable to heat stress due to hotter leaf temperatures

and narrower thermal safety margins. In any case, vulnera-

bility is likely related to inhibition of the dark reaction

phase of photosynthesis and the export of sugars from

leaves, and thus linked to leaf protein content and/or func-

tionality of each of the complexes in the electron transport

chain. Molecular mechanisms underpinning genetic varia-

tion in wheat Tcrit may include the induction of heat shock

proteins (HSPs), changes in leaf fatty acid composition,

and the production of proteins required for assembly and

stabilisation of active PSII complexes. Understanding and

exploiting these mechanisms is likely to be more relevant

to crop improvement than accounting for interspecific vari-

ation among other plants, particularly given the large

amount of genetic divergence between wheat and the

mostly woody species that past photosynthetic heat toler-

ance research has traditionally examined. Additionally,

integrating into models a quantification of GEI effects on

Tcrit could improve projection reliability of climate change

impacts on crop production (Pacifici et al., 2015). We also

note that our system of determining Tcrit, although high-

throughput, was limited to leaf discs measured hours after

detachment and did not allow for whole-plant measure-

ment. Further, the Tcrit of detached leaves has been

observed to reflect conservative estimates of Tcrit relative

to in situ levels of PSII heat tolerance (Buchner et al., 2013,

2017).

The experimental field sites for this study were chosen

as representative of Australian wheat production practices

and environments. Interestingly, we did not detect signifi-

cant genetic effects on wheat Tcrit among 20 genotypes in

any of the three environments at Dingwall, Victoria, thus

these environments were excluded from the MET analysis.

It is unclear why genetic effects were not detectable in

Dingwall but were present in Barraport West and the other

environments among the same set of 20 genotypes. The
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Dingwall and Barraport West sites are only 49 km apart;

both are in the Mallee district of south-eastern Australia

and have a similar climate and relatively infertile soils

(Isbell, 2002). Differences in genotype responses across

sites suggest a strong environmental and/or management

influence on wheat Tcrit, possibly due to physiological

adjustments to microhabitat and leaf temperature changes

in response to rainfall and irrigation (timing, amount and

form of application; Curtis et al., 2019; Perez & Feeley,

2020). While the total amount of water supplied at Ding-

wall was lower than Barraport West, both sites received

adequate irrigation, and yield of the Dingwall trial was con-

sistently higher than Barraport West (Coast et al., 2021).

Heritability of wheat PSII heat tolerance was highly

variable

Heritability is essential for the selection of superior geno-

types and the identification of genomic loci that affect the

trait of interest. H2 ranges from 0 (no heritability) to 1

(high heritability). High H2 indicates that most of the

observed phenotypic variation can be attributed to genet-

ics, and therefore response to selection will be high. We

observed highly variable broad-sense heritability for

wheat Tcrit – ranging from 0.15 to 0.75 – with clear differ-

ences between the field (low H2) and the controlled envi-

ronments (medium to high H2; Table 2). The differences in

H2 between environments reflect the larger residual vari-

ances in the field environments compared with the con-

trolled environments. Variability in light levels may have

contributed to these differences, with light levels in the

growth chambers (although not high at 500–600 μmol m−2

sec−1) more stable than in the field. Heritability of wheat

PSII heat tolerance was comparable to H2 reported for leaf

cellular membrane stability a different measure of leaf

heat tolerance – where values ranged from 0.09 to 0.74 in

a variety of crops, including soyabean (Glycine max L.; H2

= 0.09–0.65; Martineau et al., 1979), maize (Zea mays L.;

H2 = 0.58; Ottaviano et al., 1991) and spring wheat (H2

= 0.74; Blum et al., 2001). The range of Tcrit H2 in our

study is larger than the H2 previously reported for wheat

flag leaf photosynthesis in Australia (0.45–0.65; Silva-Pérez
et al., 2020), Mexico (0.33–0.50; Molero & Reynolds, 2020)

and the UK (0.50–0.59; Carmo-Silva et al., 2017; Driever et

al., 2014). The fact that the range in H2 for Tcrit is larger

than in other related traits may be partly due to our use

of the sound experimental practice of multi-phase experi-

mental design. This sound design, together with advanced

statistical analysis techniques, improved the accuracy of

genotype comparison by accounting for extraneous

sources of trend in both the field and laboratory phases.

Success in breeding for heat tolerance has been con-

strained by the complexity of heat tolerance inheritance,

access to appropriate and consistent selection environ-

ments (Porch & Hall, 2013), and the resource-intensive

and time-consuming nature of such efforts (Driedonks et

al., 2016; Kotak et al., 2007). However, recent advances in

high-throughput phenotyping, incorporation of more

physiological characterisation into molecular marker or

genomic selection strategies, followed by extensive evalu-

ation in MET under stress is yielding positive results (Fis-

cher, 2022; Trethowan, 2022).

The high Tcrit H
2 observed in some of our environments

suggest that sustainable genetic gains could be achieved

by including Tcrit as a selection criterion in wheat breeding,

a prospect made possible by the development of high-

throughput phenotyping tools for Tcrit (including the one

used in this study or reported in Arnold et al., 2021). Indi-

rect selection for higher grain yield through secondary

traits with higher heritability and strong associations with

grain yield can be more effective than direct selection for

grain yield under stress (Bänziger & Lafitte, 1997). How-

ever, the association between Tcrit and grain yield has not

been established. Whilst many recent reports assume links

between PSII heat tolerance and increased plant fitness

under heat stress (Ferguson et al., 2020; Leon-Garcia &

Lasso, 2019; Perez & Feeley, 2020; Zhu et al., 2018), there

remains a need to validate this relationship more thor-

oughly. Such studies could ascertain whether or not main-

taining a higher Tcrit translates to better grain yield and

quality under heat stress, as well as identifying any associ-

ated yield or quality penalties in non-stressed environ-

ments. Given the compelling evidence that reproductive

organs (including floral organs and developing seeds) are

more vulnerable than leaves to heat and drought stresses

(Ruan, 2014), and that this susceptibility can be due to poor

sink capacity, independent of photosynthesis, as shown in

tomato (Li et al., 2012) and maize (Shen et al., 2022), it

would also be worth examining the link between leaf Tcrit

and reproductive organ heat tolerance.

MET analysis using FA models showed significant GEI

effects on Tcrit

If genetic gains in heat tolerance are to be achieved by

incorporating PSII heat tolerance traits in breeding pro-

grammes, a critical assessment of PSII heat tolerance GEI

is required. The FA model provided an efficient and realis-

tic way to model the complexity of both the genetic vari-

ances and the genetic correlations for wheat Tcrit GEI

effects (Smith et al., 2001, 2015; Smith & Cullis, 2018).

Additionally, the flexibility of the linear mixed model in

dealing with unbalanced data enabled analysis of the MET

data with varying numbers of genotypes (20–50) and repli-

cations (2–4) across experiments. Our final FA model

accounted for > 50% of the genetic variance in most envi-

ronments, and up to 100% in three of the nine environ-

ments (Table 4). The total variance accounted for across all

environments was relatively low and constrained by the

poor fit for Tcrit in Barraport West TOS 3.
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The FA models have also been used to define mega-

environments in plant breeding programmes (Smith et al.,

2015; Smith & Cullis, 2018). Based on the genetic correla-

tions from our final FA model, all environments (excluding

Barraport West TOS 3) clustered into two groups (or mega-

environments), suggesting strong GEI between these two

groups, and weaker GEI within each group. Barraport West

TOS 3 shared particularly low genetic correlations with the

other eight environments (Figure 1). By contrast, the high

genetic correlations between environments within clusters

1 and 2 suggests there were similar genetic responses for

environments within a cluster (i.e. low GEI). Narrabri TOS

2 was closely correlated with the two simulated cool sea-

sons, especially SIM-W1 (Figure 1). From a phenotyping

perspective, these strong correlations indicate that the

APPF Growth Capsules can be used in conjunction with

field experiments to evaluate wheat Tcrit.

Our study provides a sound foundation for further inves-

tigating the extent to which photosynthetic heat tolerance

can improve grain yield, and supports the targeting of PSII

heat tolerance in Australian wheat breeding. However, it

remains a single study of a single trait, and thus its contri-

bution to overall wheat heat tolerance improvement is lim-

ited given that many other traits also contribute to heat

tolerance. For greater impact, Tcrit GEI should be consid-

ered alongside other relevant energy metabolism-related

physiological traits. For example, our recent works showed

that elevated temperature elicited a stronger response

from wheat mitochondrial dark respiration (measured as

O2 consumption rate, Rdark_O2) than from photosynthesis,

as well as a greater Rdark_O2 response to night warming

rather than day warming (Coast et al., 2021; Posch et al.,

2021). Warm nights also led to declines in biomass and

leaf and root Rdark_O2 and increased alternative oxidase

pathway capacity, suggesting a reduction in plant energy

demand under warm nights. The strong links between bio-

mass decline, photosynthesis and respiration under heat

stress strengthen the case for a multi-faceted approach to

cultivar improvement that exploits a combination of respi-

ratory heat tolerance traits (e.g. Tmax of Rdark, the tempera-

ture at which Rdark peaks prior to respiratory function

rapidly declining) and Tcrit.

Wheat Tcrit at anthesis is strongly influenced by mean

daily growth temperature preceding anthesis

Our results show that Tcrit of PSII in wheat flag leaves was

influenced by all measured environmental covariates.

However, mean daily temperature correlated best or sec-

ond best with first factor loadings for all periods, except

3 days prior to anthesis. Growth temperature is one of the

most influential environmental drivers of photosynthesis

(Atkin & Tjoelker, 2003; Hikosaka et al., 2005; Wright et al.,

2006), and within the photosynthetic machinery the thy-

lakoid membrane-embedded PSII is particularly heat

sensitive (Armond et al., 1978). That mean daily tempera-

ture was correlated with Tcrit in the short (1 day prior to

anthesis), medium (7–30 days prior to anthesis) and long

(sowing to anthesis) terms likely reflects different scales of

mechanistic adjustments in the leaf. Adjustments due to

temperature stress in the short term may be underpinned

by biochemical changes, such as increased relative abun-

dance of saturated fatty acids (Zhu et al., 2018), expression

of HSPs (Vierling, 1991) and/or changes in the concentra-

tion of key metabolites (Kaplan et al., 2004). On the other

hand, medium- and/or long-term associations presumably

relate to changes of thylakoid membranal and leaf func-

tional traits that require greater investment in PSII. Such

investments in membranal characteristics may be related

to repairs of PSII, for example, curvature, thickness and

stromal gaps (Theis & Schroda, 2016; Yoshioka-Nishimura,

2016), as well as leaf structural and morphological traits

(e.g. higher leaf mass per area, leaf thickness and density)

that confer high-temperature tolerance (e.g. species with

higher leaf mass per area have higher photosynthetic heat

tolerance; Sastry & Barua, 2017; Wright et al., 2005).

In addition to links between Tcrit and environmental

covariates that span various days prior to measurement of

Tcrit, we specifically investigated links between Tcrit and

growth temperatures of specific time frames (i.e. daytime,

night-time, midday and a 24-h period). Tcrit was mostly

dependent upon mean daily temperature. We had expected

a stronger link between Tcrit and the higher temperatures

around midday. However, in the Australian context, the

strong relationship between mean daily temperature and

Tcrit was still notable given that wheat yield losses have

been attributed to a combination of increasing mean daily

temperatures and heatwaves (Ababaei & Chenu, 2020).

CONCLUSION

Genetic variance for Tcrit in a subset of Australian wheat

breeding germplasm demonstrates potential for significant

genetic gains in heat tolerance. Our results revealed signifi-

cant Tcrit GEI, as well as identified mean daily growth tem-

perature prior to anthesis as the major environmental

driver of Tcrit GEI – both supporting the potential develop-

ment of high-temperature-tolerant wheat. The potential

gains of incorporating Tcrit in breeding programmes are

worth exploring despite heritability for Tcrit in the field

being relatively low. Links between wheat Tcrit and crop

performance should be investigated further to ascertain

whether or not higher Tcrit translates to improved grain

yield and quality under heat stress, as well as whether high

Tcrit bears any yield or quality penalties in non-stressed

environments.

EXPERIMENTAL PROCEDURES

A total of 54 wheat genotypes (Table S1) were grown in eight field
and four controlled environments over 3 years (2017–2019). Of
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these 54 genotypes, 20 were common to all environments. The
eight field experiments were conducted in major wheat-growing
regions of Australia (Dingwall, Victoria in 2017, Barraport West,
Victoria in 2018, and Narrabri, New South Wales in 2019). The
field trials were sown 1 month apart over 3 months in 2017 and
2018, and 2 months apart in 2019, with the initial sowing time
being the optimum sowing time for each region. Later sowing
exposed plants to higher temperatures at the critical reproductive
and grain-filling stages of development. Across the different trials,
plants received water from a combination of rainfall and irrigation
of 152–185 mm in Dingwall, 217–235 mm in Barraport West, and
363–492 mm in Narrabri between sowing and anthesis. Twenty
genotypes were evaluated during the 2017 and 2018 trials, and 24
genotypes in 2019. The experimental designs, crop husbandry
and data collection methods were similar across all three field
experiments, except for the differences mentioned above (i.e.
number of sowings and genotypes). A detailed description of the
2017 and 2018 experimental sites, designs and crop husbandry
are reported in Coast et al. (2021), while those for the 2019 experi-
ments are given below.

2019 field trial with 24 genotypes

Experimental site. The 2019 field experiment was conducted
at the Plant Breeding Institute (PBI; 30.27°S, 149.81°E; elevation
212 m above sea level) of The University of Sydney, Narrabri,
NSW. Narrabri is characterised by hot summers and mild winters
with a summer-dominant rainfall pattern. Long-term mean daily
maximum and minimum temperatures during the wheat growing
season at Narrabri range from 7.1–21.3°C in May (optimal sowing
time) to 11.4–26.94°C in October (during anthesis) and 16.9–32.1°C
in December (at harvest). Mean rainfall from sowing (in May) to
anthesis (in October) at Narrabri is 273 mm. Temperature, relative
humidity, rainfall and windspeed data were recorded onsite with a
weather station. The soil in Narrabri is a cracking, montmoril-
lonitic clay soil characterised as a grey vertosol (Isbell, 2002).

Experimental design. The 2019 field experiment used a two-
phase experimental design following the definition of Brien and
Bailey (2006) to investigate the response of Tcrit of 24 genotypes
to warmer growth conditions. This was employed to account for
variation due to the experimental layout in the field (field phase)
and on the 48-well plate used in the laboratory for determining
Tcrit (laboratory phase). The two-phase experimental design was
implemented to separate potential sources of variation into com-
ponents, thus improving the estimate of treatment effects (Cullis
et al., 2003; Curnow, 1959).

The field phase focused on 24 wheat genotypes that formed
part of a larger set of 30 wheat genotypes in a time of sowing
(TOS) trial. The experiment was arranged in two trials (or main
blocks) subdivided into four replicate blocks. The two main
blocks represented recommended sowing (Narrabri TOS 1) and
late-sown (Narrabri TOS 2) environments, and were treated as
two trials each containing four replicate blocks. Each replicate
block consisted of 30 plots arranged in five rows and six col-
umns. Wheat genotypes were randomly allocated to the plots
within each replicate block following a randomised complete
block design. Narrabri TOS 1 was sown on 17 May 2019 and Nar-
rabri TOS 2 was sown on 15 July 2019. Flag leaf tissue was taken
from one randomly selected plant in each field plot (see Flag leaf
sampling section below). A total of 192 leaf tissue samples from
24 genotypes, four blocks and two TOS were collected. These
samples formed the experimental units for the laboratory phase
of the experiment.

The laboratory phase of the experiment was based on an
Incomplete Block Design across 12 blocks with 24 units per block,
with the initial starting array generated from the CycDesigN pack-
age (VSN-International, Hemel Hempstead, UK). The laboratory
phase was conducted separately for each TOS, as partially repli-
cated designs (Cullis et al., 2006) with 1.5 replicates of 96 treat-
ments, where the 96 treatments comprised a factorial treatment
structure of four field replicates by 24 genotypes. Laboratory anal-
ysis was conducted over 6 days: three consecutive days each for
Narrabri TOS 1 and Narrabri TOS 2. Each day comprised two
incomplete blocks. The starting Incomplete Block Design was opti-
mised for the layout of samples across the 48-well plate using the
optimal design (od) package in R (Butler, 2013). The leaf samples
were positioned across a 6 × 8 spatial array, based on the dimen-
sions of the Peltier block described in the next section.

2019 controlled environment trial with 50 genotypes

In addition to the field trials, a trial with 50 wheat genotypes (in-
cluding 20 genotypes common to the field trials) was conducted
in four high-precision Growth Capsules, with independent control
of temperature, relative humidity and multispectral LED light. The
Growth Capsules were managed by the Australian Plant Phe-
nomics Facility (APPF) and Grain Phenomics Climate Facility at the
Australian National University (ANU), Canberra (https://www.
plantphenomics.org.au). Each Growth Capsule comprised two
separate chambers 3.8 m wide × 1.1 m deep × 2.1 m high. These
Growth Capsules are capable of simulating location-specific envi-
ronmental conditions, including diurnal and seasonal changes
and complex climate scenarios, thus enabling phenotypic compar-
ison and screening of large numbers of genotypes across various
environments. The chambers were used to dynamically simulate
four environments: two cool and two warm (approximately 5°C
higher than the cool) wheat-growing seasons, based on the 15-
min average temperature from the vegetative growth period to
the end of anthesis (June–October) each year from 2013 to 2018
for the Narrabri site. Simulation of dawn, daylight and dusk tim-
ings also mimicked conditions in Narrabri. Lights were supplied
by colour-adjustable LED modules that were kept thermally insu-
lated from the plant growth area. The simulated environments will
henceforth be identified as simulated cool season 1 (SIM-C1), sim-
ulated cool season 2 (SIM-C2), simulated warm season 1 (SIM-
W1) and simulated warm season 2 (SIM-W2).

Crop husbandry. Germinated seeds of the 50 wheat genotypes
were sown into 6-L plastic pots (one seedling per pot) filled with
Martins potting mix (Martins Fertilizers, Yass, NSW Australia).
Martins potting mix is a formulation of organic composted materi-
als, coir, water storage crystals, controlled-release fertiliser, trace
elements and wetting agent. The Martins mix was supplemented
with 4 g L−1 of Osmocote® OSEX34 EXACT slow-release fertiliser
(Scotts Australia, Bella Vista, NSW, Australia) and treated at 63°C
for 1 h prior to filling pots. Plants were grown for 3 weeks under
glasshouse conditions at the ANU Controlled Environment Facili-
ties, Canberra, Australia. In the glasshouse, plants were exposed
to natural light with average daylength of 11.8 h, and daily light
integral of 14.9 mol m−2 d−1. Daily temperature and relative humid-
ity were on average 19.4°C and 54.8%, respectively. Thereafter
plants were transferred to the high-precision Growth Capsules
described earlier, where they were initially kept for 1 week at con-
stant day:night temperatures of 20:15°C, with photosynthetically
active radiation at plant height of 500–600 μmol m−2 sec−1 on a 12-
h photothermal regime. Following this week, the environmental
conditions within the chambers were programmed to either a cool
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(SIM-C1 and SIM-C2) or warm (SIM-W1 and SIM-W2) thermal
regime. For SIM-C1 and SIM-C2, which were based on Narrabri
2013–2018 June–October weather, average daily maximum tem-
perature varied from 16.8 to 39.3°C, and average daily minimum
temperature varied from −4.3 to 12.2°C. For SIM-W1 and SIM-W2,
the chambers were set to 5°C higher than SIM-C1 and SIM-C2.
General plant management followed the established protocol of
the APPF and Grain Phenomics Climate Facility at ANU with addi-
tional control for powdery mildew and aphids as required.

Experimental design. Plants were randomly positioned on
benchtops in the chambers, following a randomised complete
block design with two replicates per genotype. This resulted in a
total of 200 plots in phase one of the experiment. Because the lab-
oratory phase of estimating Tcrit was limited to 48 samples per
run, a laboratory phase design was created with 6 blocks of 24
units per block, totalling 144 leaf samples. Thus, the laboratory
design followed a partially replicated design and was unbalanced
with three leaf samples for most genotypes (one sample from
chamber replicate one and two samples from chamber replicate
two or vice-versa). However, four genotypes were limited to one
single leaf sample from each environmental replicate. Due to dif-
ferences in genotype maturity in the cool and warm environ-
ments, samples were collected separately. All samplings were
done when plants were at the same developmental stage – at
anthesis (Zadoks growth stage 60–69; Zadoks et al., 1974). Geno-
types grown in the warm environments were collected prior to
those in the cool environments, each being sampled over three
consecutive days at 48 samples per day. Like the 2019 field experi-
ment, the design of the controlled environment study, with the ini-
tial starting array, was generated using the CycDesigN package
(VSN-International, Hemel Hempstead, UK), and the starting
design was optimised for the layout of samples across the 48-well
plate using the optimal design (od) package in R (Butler, 2013).

Flag leaf sampling and determination of Tcrit

Flag leaves were harvested when at least 50% of the genotypes
were at anthesis. In the field, leaves were harvested from plants
from one of the inner three rows of five-row plots between 08:30
and 10:30 hours. In the chambers, flag leaves of main tillers at
anthesis were harvested between 08:45 and 11:00 h. Immediately
after harvesting a flag leaf, a section of approximately 3–4 cm was
cut from the middle. The middle and upper sections of the leaves
were kept in resealable bags and dark-adapted for between 1.5
and 6 h prior to estimating Tcrit (middle section). In a previous
experiment, we determined that dark-adapting leaves for between
1.5 and 6.5 h post-excision from plant had no significant effect
(P = 0.189) on Tcrit (Supplementary Information S1 and Table S2).

Wheat Tcrit was determined using a custom-built system that
combined an imaging fluorometer (FluorCam 800MF, Photon Sys-
tems Instrument, Brno, Czech Republic), a thermoregulator
attached to the fluorometer (TR2000, Photon Systems Instrument,
Brno, Czech Republic) and a 48-well Peltier block. The Peltier block
measured 8 × 12 cm, and each well on the block was 1 cm in
diameter. This set-up was capable of temperature regulation
within the 10–70°C range with accuracy of � 0.1°C. Single leaf
discs (~6 mm diameter) were excised from the middle sections of
the detached dark-adapted flag leaves and placed atop 90 μl of tap
water in the wells of the Peltier block. Water was supplied to pre-
vent water stress during the assay. In addition, a transparent glass
plate covered the wells to reduce evaporative loss during the sub-
sequent application of a heat ramp (i.e. a constant rate of temper-
ature increase). The Peltier block was positioned 14 cm below a

charge-coupled device camera within the fluorometer for imaging.
Leaf discs were warmed at a constant rate of 1°C min−1 from 20 to
65°C, consistent with generally used measurement protocols
(Schreiber & Berry, 1977; Weng & Lai, 2005; Zhu et al., 2018).
Mean surface temperatures of leaf discs increased at a similar rate
to the programmed temperature and block surface temperature,
but were generally cooler (by 0.9–3.9°C, Supplementary Informa-
tion S2; Figure S1). Throughout the temperature ramp the imag-
ing fluorometer measured the minimum chlorophyll fluorescence
(F0) of leaf discs at approximately 1-min intervals. Fluorescence
was measured by excitation using short flashes (10 μsec) of extre-
mely weak blue light. The FluoroCam 7.0 software package
(Photon Systems Instrument, Brno, Czech Republic) was used to
pre-process captured images, and to export the temperature and
fluorescence data. Wheat Tcrit was determined from the tempera-
ture and fluorescence data according to the method of Schreiber
and Berry (1977), using the package segmented (Muggeo, 2003,
2008, 2016, 2017) in the R statistical environment (R-Core-Team,
2021). The segmented package estimates linear and generalised
linear models, and iteratively identifies the breakpoint based on
the best fit model. The breakpoint was taken as Tcrit, along with
the estimate of its standard error. Using the segmented package is
preferred to deriving Tcrit traditionally from the intersection point
of two regression lines extrapolated from the flat and steep por-
tion of the temperature-dependent F0 response curve (Knight &
Ackerly, 2003; O’Sullivan et al., 2017; Schreiber & Berry, 1977) as it
eliminates human bias in selecting the intersection point and pro-
vides an estimate of standard error for Tcrit.

Statistical analysis

Analysis of the Tcrit data was undertaken in three parts: (1) single
environment analysis; (2) MET analysis; and (3) correlations of FA
model loadings with environmental variables (Figure S2; Tables
S3 and S4). In the first part, linear mixed models for each individ-
ual environment were fitted, with fixed, random and residual
terms accounting for the treatment effects and design effects rele-
vant to the different experimental layouts in each environment.
Genotype was fitted as a fixed effect for these individual environ-
ment analyses. Spatial effects were assessed, and the required
terms fitted, using the method of Gilmour et al. (1997) and Cullis
et al. (2003). The Dingwall and Barraport West trials consisted of
only a single phase, so the models for the environments in these
trials included design and spatial terms relevant to this single
phase. For the Narrabri trial, with a two-phase experimental
design spanning both the field and the laboratory, the models for
these environments accounted for both the field phase design and
spatial effects, and the laboratory phase design and spatial effects.
The laboratory phase effects considered included spatial effects
on the Peltier block wells, and design effects induced by sampling
across days and the incomplete block design (described previ-
ously). Due to identical randomisation of the chamber material to
the laboratory phase for the four simulated environments, it was
impossible to separate the chamber spatial variability from spatial
variability across wells. As such, each chamber was assumed to
be its own environment, and the analyses of these environments
were undertaken as independent single-phase analyses. Diagnos-
tic residual plots were used to check assumptions of normality
and homoscedasticity of residuals made during model fitting, and
to visualise spatial trends along rows and columns. Log-likelihood
ratio tests were used to test changes in the random spatial effects
between models, and Wald tests were used to assess the signifi-
cance of fixed spatial effects, to select the most parsimonious
model for each environment. The selected models were examined
for significant genetic effects using Wald tests. Environments that
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showed significant genetic effects for Tcrit were then incorporated
in the second step of the analysis. However, environments that
were found to have no significant genetic effects in the prelimi-
nary single site analyses were omitted from the subsequent MET
analysis. The null hypothesis for testing a treatment effect is that
there is no difference between treatment means. As such, a lack of
significant genetic effects in an environment indicates that there
are no significant differences in genotype performance within that
environment for the trait of interest.

The second part of the analysis combined data from the environ-
ments with significant genetic effects into a MET analysis. Initially,
a diagonal variance model was fitted to the GEI effects, which
allowed for heterogeneous genetic variances for each environ-
ment. The diagonal genetic variance model was used as a baseline
model that assumed independence of the GEI effects between
environments; thus, it was analogous to analysing each environ-
ment separately. Broad-sense heritability (H2) was estimated fol-
lowing the method of Cullis et al. (2006) for each environment
using the diagonal genetic variance model. This was estimated as:

H2 ¼ 1� Att

2γυ
, where Att is the average pairwise prediction error

variance of the genotype effects, and γυ is the genetic variance, for
a particular environment.

Subsequently, FA models (FAn, with n in this case indicating the
order of the FA model from 1 to 5; Smith et al., 2001) were fitted
to allow for heterogeneity in both the genetic variances for each
environment and the genetic correlations between environments.
The diagonal variance model and FAn models were compared to
select a final genetic variance model for the MET analysis. Model
comparisons involved a holistic assessment of log-likelihood ratio
tests, values of AIC (Bozdogan, 1987), and the percentage of
genetic variance accounted for by the factors (Beeck et al., 2010;
% VAF; Smith & Cullis, 2018). The final MET model was used to
obtain predictions of the GEI effects via empirical best linear unbi-
ased predictions (eBLUPs), as well as genetic variances for each
environment, and genetic correlations between each pair of envi-
ronments. The genetic correlations indicated the presence or
absence of GEI, with high positive correlations between environ-
ments corresponding to low GEI (i.e. genotypes have similar Tcrit

rankings across multiple environments). To identify superior
genotypes across environments (i.e. those with consistently high
and stable Tcrit), measures of OP and stability/sensitivity (defined
as RMSD) from the FA selection tools (FAST) method proposed by
Smith and Cullis (2018) were used. Lower RMSD values for geno-
types indicate lower sensitivity of those genotypes to environmen-
tal conditions in terms of Tcrit.

The third part of the analysis focussed on correlations of FA
model loadings with environmental variables. Correlation coeffi-
cients between rotated factor loadings from the final FA models
and environmental covariates for specified periods preceding
anthesis were estimated using Spearman’s rank correlations. The
environmental covariates were growth air temperature, relative
humidity, vapour pressure deficit, photoperiod and solar radia-
tion. Photothermal quotient – the ratio of mean daily incident or
intercepted radiation to mean temperature – was also correlated
with the rotated factor loadings. Photothermal quotient for the
controlled environments was computed using daily light quantity
in the chambers – the quantity of photons in the photosynthetic
range integrated over the day (daily light integral). These correla-
tion coefficients were used to identify the most likely environmen-
tal drivers of Tcrit GEI.

Analyses were conducted using the ASReml-R software (Butler
et al., 2017) within the R statistical environment (R-Core-Team,
2021) and Genstat (21st ed. VSN International, Hemel Hempstead,

UK). ASReml-R estimates variance parameters of linear mixed
models using Residual Maximum Likelihood (REML; Patterson &
Thompson, 1971). In addition to ASReml, the R packages, ‘ASEx-
tras4’ (Butler, 2015), ‘myf’ (Butler, 2014) and ‘reshape2’ (Wickham,
2007) were required for analysis, and ‘ggrepel’ (Slowikowski,
2021), ‘cluster’ (Maechler et al., 2021) and ‘ggplot2’ (Wickham,
2016) for visualisation of results.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article.

Table S1. Pedigree information for 54 wheat genotypes used in
this study

Table S2. Effect of time from harvest and dark adaptation on flag
leaf Tcrit of wheat cultivars Trojan and Suntop

Table S3. Information about experimental designs for experiments
conducted as part of the MET investigation of wheat Tcrit

Table S4. Environmental variables correlated with rotated factor
loadings of the FA2 model for specified growth periods preceding
anthesis. The growth periods were 1, 3, 7, 10, 20 and 30 DBM of
Tcrit, and from sowing to measurement of Tcrit

Table S5. Fixed, random and residual model terms fitted for each
environment and used in the final MET analysis

Table S6. Ranking of wheat genotypes based on OP of Tcrit from
the MET analysis

The RMSD values are included as a measure of sensitivity of
genotypic performance to environmental conditions. Lower RMSD
values indicate lower sensitivity. Data are presented for the seven
commercial cultivars, used as checks, and the highest and lowest
four ranked genotypes based on OP.

Table S7. Spearman’s rank correlation coefficients (ρ) for correla-
tions between the rotated factor loadings (first factor, Λ1; and sec-
ond factor, Λ2) of the FA2 model (a FA model of order 2) and
growth environment temperature over 24 h (all day), from sunrise
to sunset, at about midday (0900–1500 h), and at night (sunset to
sunrise) for wheat Tcrit

Figure S1. Plots of relationship between the temperatures on the
Peltier heating block against temperatures of water in the heating
block wells (blue circles), and of leaf discs placed directly on the
surface of the water plate (orange circles). The Peltier heating
blocks were set to ramp the temperature from 20 to 60°C at a con-
stant rate of rate of 1°C min−1. Linear regression for water was y
= –0.93x + 1.40 (R2=0.99) and for leaf discs was y = 0.96x – 0.88
(R2 = 0.99).

Figure S2. Flow chart of data analysis.

Data S1. Tcrit MET Dataset

Data S2. Environmental covariates
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Ottaviano, E., Sari Gorla, M., Pè, E. & Frova, C. (1991) Molecular markers

(RFLPs and HSPs) for the genetic dissection of thermotolerance in maize.

Theoretical and Applied Genetics, 81, 713–719.
Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E.M., Butchart, S.H.M.,

Kovacs, K.M. et al. (2015) Assessing species vulnerability to climate

change. Nature Climate Change, 5, 215–224.
Patterson, H.D. & Thompson, R. (1971) Recovery of inter-block information

when block sizes are unequal. Biometrika, 58, 545–554.
Perez, T.M. & Feeley, K.J. (2020) Photosynthetic heat tolerances and

extreme leaf temperatures. Functional Ecology, 34, 2236–2245.
Porch, T.G. & Hall, A.E. (2013) Heat tolerance. In: Kole, C. & Viswavidyalaya,

B.C.K. (Eds.) Genomics and breeding for climate resilient crops: Vol. 2

target traits. New York: Springer-Verlag, pp. 167–202.
Posch, B.C., Hammer, J., Atkin, O.K., Bramley, H., Ruan, Y.-L., Trethowan,

R. et al. (2022) Wheat photosystem II heat tolerance responds dynami-

cally to short and long-term warming. Journal of Experimental Botany,

73(10), 3268–3282.
Posch, B.C., Zhai, D., Coast, O., Scafaro, A.P., Bramley, H., Reich, P.B. et al.

(2021) Wheat respiratory O2 consumption falls with night warming

alongside greater respiratory CO2 loss and reduced biomass. Journal of

Experimental Botany, 73, 915–926.
Qureshi, M.E., Hanjra, M.A. & Ward, J. (2013) Impact of water scarcity in

Australia on global food security in an era of climate change. Food Pol-

icy, 38, 136–145.
R-Core-Team. (2021) R: A language and environment for statistical comput-

ing. Vienna, Austria: R Foundation for Statistical Computing.

Rekika, D., Monneveux, P. & Havaux, M. (1997) The in vivo tolerance of

photosynthetic membranes to high and low temperatures in cultivated

and wild wheats of the Triticum and Aegilops genera. Journal of Plant

Physiology, 150, 734–738.
Ruan, Y.-L. (2014) Sucrose metabolism: Gateway to diverse carbon use and

sugar signaling. Annual Review of Plant Biology, 65, 33–67.
Sae-Lim, P., Komen, H., Kause, A. & Mulder, H.A. (2014) Identifying environ-

mental variables explaining genotype-by-environment interaction for

body weight of rainbow trout (Onchorynchus mykiss): reaction norm and

factor analytic models. Genetics Selection Evolution, 46, 16.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2022), 111, 1368–1382

Wheat Tcrit GEI 1381

https://rdeplan.grdc.com.au/__data/assets/pdf_file/0020/434090/KIT-1.1_detailed-strategy.pdf
https://rdeplan.grdc.com.au/__data/assets/pdf_file/0020/434090/KIT-1.1_detailed-strategy.pdf
https://doi.org/10.1111/tpj.13998
https://doi.org/10.1111/tpj.13998


Sastry, A. & Barua, D. (2017) Leaf thermotolerance in tropical trees from a

seasonally dry climate varies along the slow-fast resource acquisition

spectrum. Scientific Reports, 7, 11246.

Schreiber, U. & Berry, J.A. (1977) Heat-induced changes of chlorophyll fluo-

rescence in intact leaves correlated with damage of the photosynthetic

apparatus. Planta, 136, 233–238.
Sharma, D.K., Andersen, S.B., Ottosen, C.-O. & Rosenqvist, E. (2012) Pheno-

typing of wheat cultivars for heat tolerance using chlorophyll a fluores-

cence. Functional Plant Biology, 39, 936–947.
Sharma, D.K., Torp, A.M., Rosenqvist, E., Ottosen, C.-O. & Andersen, S.B.

(2017) QTLs and potential candidate genes for heat stress tolerance iden-

tified from the mapping populations specifically segregating for Fv/Fm in

wheat. Frontiers in Plant Science, 8, 1668.

Shen, S., Ma, S., Chen, X.-M., Yi, F., Li, B.-B., Liang, X.-G. et al. (2022) A

transcriptional landscape underlying sugar import for grain set in maize.

The Plant Journal, 110, 228–242.
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