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Abstract: 11 

Faba bean (Vicia faba L.) is an important grain legume used as food and feed. Its production 12 

is threatened by abiotic stresses and diseases, of which rust (Uromyces viciae-fabae) is one 13 

of the major diseases in East and North Africa, China and the northern grain-growing region 14 

of Australia. Understanding the genetic and physiological mechanisms of rust resistance in 15 

faba bean is in an early phase. The presence of seedling and adult plant resistance genes has 16 

been observed. The resistance most frequently utilised in applied plant breeding is race-17 

specific, where the interaction between resistance genes in the host and avirulence genes in 18 

the pathogen confers resistance. The main drawback of using race-specific resistance is lack 19 

of durability, when deployed singly. Slow rusting or partial resistance, controlled by 20 

multiple genes of small effect, is generally non-race specific, so it can be more durable. We 21 

present the current knowledge of host resistance and pathogen diversity and propose rational 22 

breeding approaches aided with molecular markers to breed durable rust resistance in faba 23 

bean. 24 

Key words: Faba bean rust (Uromyces viciae-fabae), breeding, major resistance genes, gene 25 

pyramiding, molecular markers. 26 

Introduction: 27 

Faba bean (Vicia faba L.) is a protein-rich grain legume, grown on all inhabited continents 28 

for food and feed, and it is a key source of dietary protein in North and East Africa, the 29 
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Middle East and China. It is a diploid (2x=12)  species having  one of the largest described 30 

genomes (13 Gb) among crop legumes, with at least 85% repetitive DNA (Flavell et al. 31 

1974). It is believed to have been domesticated in the Fertile Crescent during the Neolithic 32 

era 9000-10000 BP (Tanno and Willcox 2006). Its secondary centres of diversity include the 33 

Nile Valley, Central and Eastern Asia, and South America (Duc et al. 2010). Faba bean is 34 

the sixth most important grain legume with 4.3 million tonnes annual production worldwide 35 

in 2014 (FAOSTAT 2017). Australia is the fourth largest producer (after China, Ethiopia 36 

and the UK) and the largest exporter globally (Eurostat 2016; FAOSTAT 2017), with nearly 37 

85% of its total produce going to Egypt (70%) and Saudi Arabia (15%) (ABSTAT 2015). 38 

Similar to other legumes, faba bean is a good source of renewable nitrogen through 39 

biological nitrogen fixation (Jensen et al. 2010). It has a mixed breeding system, averaging 40 

one-third outcrossing and two-thirds inbreeding, which adds complexity to populations in 41 

the field, their genetic and phenotypic analysis, and practical plant breeding (Stoddard and 42 

Bond 1987).  43 

Faba bean area decreased worldwide from 1962 to 1991, and since then has more or less 44 

stabilised at 2.1-2.7 million hectares, mostly across Asia and the Mediterranean region  45 

FAOSTAT 2017). Apart from the commodity price, one of the reasons for decline is the 46 

prevalence of pathogenic fungi and the absence of disease-resistant cultivars (Sillero et al. 47 

2010). Measures to control diseases include chemicals, biological control agents and crop 48 

management or cultural practices (Sillero et al. 2010). Systemic fungicides provide rapid 49 

and effective control, but they are expensive and can be detrimental to the environment 50 

(Emeran et al. 2011). Pathogens can also develop insensitivity following prolonged exposure 51 

to chemicals (Crute 1992). Biological control agents for pathogenic fungi are not yet 52 

available commercially (Stoddard et al. 2010). Therefore, breeding cultivars for resistance 53 

is widely considered the most efficient, cost effective and environmentally safe method of 54 

disease control (Sillero et al. 2010). 55 

Rust is a major disease of faba bean in North Africa and the northern parts of the Australian 56 

grain belt (northern New South Wales and southern Queensland). The disease is caused by 57 

the biotrophic fungus Uromyces viciae-fabae (Pers.) J. Schrot., a macrocyclic rust and true 58 

obligate parasite with a sexual phase that does not require an alternate host to complete its 59 

lifecycle (Mendgen 1997; Voegele 2006). In addition to faba bean, it can parasitize common 60 

vetch (Vicia sativa L.), pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) (Conner 61 

and Bernier 1982a; Cummins 1978).  Rust usually occurs at the time of pod filling in Europe 62 
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and southern Australia, causing up to 20% yield reduction (Sillero et al. 2011), although 63 

early rust epidemics can cause up to 70% loss of the standing crop (Liang 1986; Rashid and 64 

Bernier 1991). Losses up to 30% were estimated in northern New South Wales where the 65 

disease occurs in the seedling stage. Rust resistance in general restricts fungal proliferation 66 

before sporulation. In contrast to other pathosystems such as soybean-rust (Phakopsora 67 

pachyrhizi Syd.), for which complete monogenic resistance exists (Silva et al. 2008), 68 

resistance in faba bean is generally described as incomplete (Garcia et al. 2008; Miklas et 69 

al. 2006). Incomplete resistance, a type of quantitative resistance either expressed as 70 

hypersensitive type (Adhikari et al. 2016a; Sillero et al. 2000) with visible necrosis/chlorosis 71 

or non-hypersensitive type (Herath et al. 2001; Polignano et al. 1990; Rashid and Bernier 72 

1984; 1991; Sillero et al. 2000) typically fits into the definition of partial resistance or field 73 

resistance (Parlevliet 1983).  The hypersensitive reaction type, causing significant restriction 74 

on fungal growth and reduction of an infection type, is still considered as incomplete in faba 75 

bean (Sillero et al. 2010).  76 

 In this review, we highlight the current state of knowledge of rust resistance in faba bean 77 

and explore options for extending the genetic diversity of resistance and enhancing the 78 

resistance of this crop with new and evolving genomic technologies. 79 

A brief history of rust resistance 80 

The genetic control of plant disease resistance was established soon after the rediscovery of 81 

Mendel’s work, when Biffen (1905) reported that resistance to stripe rust (Puccinia 82 

striiformis f. sp. tritici) of common wheat (Triticum aestivum L. emend Thell.) was 83 

controlled by a major gene with partial dominance. Variation in a pathogen population, 84 

resulting in variability for virulence (Barrus 1911) and resistance (McRostie 1919), was 85 

noted soon thereafter. Consequently, the concept of physiological races was defined. 86 

Physiological races are morphologically indistinguishable, but they can be differentiated in 87 

their reaction against a set of host lines known as differentials.  88 

Studies on the inheritance of host resistance and resistance breakdown based on 89 

hypersensitive responses culminated in Flor’s (1956) gene-for-gene hypothesis, wherein 90 

genes for host resistance (R) and pathogen avirulence (avr) control the outcome of the host-91 

pathogen interaction. Virulent mutated pathotypes do not elicit the hypersensitive response 92 

because the corresponding R gene is no longer effective. Mutation events resulting in a 93 

deletion or substitution of an essential amino acid responsible for protein function may cause 94 
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a complete loss of the avr gene (de Wit et al. 2009). Thus, genetic resistance in obligate 95 

parasites such as rust can be highly race-specific (Keller et al. 2000).  96 

Single R genes have generally failed to provide long-lasting resistance to rust (Johnson and 97 

Law 1973), because new virulent pathotypes frequently evolve, forcing breeders to seek new 98 

resistance genes. Lack of durability of resistance is not common to all plant pathosystems, 99 

but it is common among air-borne pathogens that possess both sexual and asexual cycles of 100 

reproduction. In the latter system, breeding for disease resistance became locked in a ‘boom-101 

bust’ cycle (Pink 2002), where resistant cultivars are sown on large areas, exerting 102 

considerable selection pressure on avirulence in the pathogen. This sequence led to the 103 

concept of multi genes and gene pyramiding, discussed later. 104 

Genetic diversity of rust resistance in faba bean 105 

The success of resistance breeding depends upon the presence of genetic variability and our 106 

ability to detect and utilise it. This variability is captured in the collection of germplasm. 107 

The largest collection of faba bean worldwide is maintained by ICARDA, Terbol, 108 

Lebanon,with over ten thousand accessions from 71 countries. The second largest reserve 109 

with 5,200 accessions is preserved at the Chinese Academy of Agriculture Research, 110 

Beijing, China followed by 2,445 collections in the Australian Grains Genebank, Victoria, 111 

Australia. The USA, Russia, Ethiopia, France, Spain, Germany and Italy also have large 112 

numbers of accessions. 113 

No wild species is sufficiently closely related to faba bean that fertile hybrids have been 114 

derived, so genetic diversity is restricted to the primary gene pool of the species itself 115 

(Cubero 2011). Accessions from the Mediterranean region are considered to have the best 116 

potential to provide genetic variation for rust resistance (Maalouf et al. 2010). Genotypes 117 

showing significant rust resistance with late necrosis originated from Central Europe (V-118 

300, V-313, V-1271, V-1272), East Africa (2N-34) and Spain (V-1335) (Sillero et al. 2000). 119 

Most of these reported rust resistance germplasm lines were already imported in Australia 120 

and named with Australian accession numbers located at Australian Grain Genebank, 121 

Horsham, Victoria (Table 1). However, interaction of these resistance genes with prevailing 122 

faba bean rust pathotypes is unknown. Interspecific sources of resistance cannot be 123 

transferred to faba bean by conventional breeding methods, and the practical significance of 124 

induced mutation is relatively low due to low success rates (van Harten 1998). The species 125 

is generally intractable to tissue culture, but successful transformation by Agrobacterium has 126 
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been reported (Hanafy et al. 2013), opening the door for eventual interspecific transfer of 127 

resistance or editing of endogenous genes. 128 

Pioneering work on rust resistance in faba bean was done in Canada in the 1980s, followed 129 

by Spain and Australia in recent years (Marcellos et al. 1995; Rose and van Leur 2006), with 130 

the identification of new genes and preservation of pathogen isolates (Adhikari et al. 2016a). 131 

Three race-specific genes (fr1, fr2 and fr3) were found for rust resistance in seven faba bean 132 

inbred lines in Canada (Conner and Bernier 1982b). Conner and Bernier (1982c) identified 133 

seven genes conferring resistance to the specific rust isolates of Manitoba, Canada. Four 134 

years later, the same group of scientists reported the presence of five genes conditioning 135 

resistance against rust isolates collected from Canada (Rashid and Bernier 1986a). The 136 

hypersensitive resistance response has been mapped to gene Uvf-1 by a group based in Spain 137 

(Avila et al. 2003).  138 

The national faba bean breeding programme in Australia aims to provide cultivars for 139 

southern regions (South Australia and Victoria) and the northern plains (New South Wales 140 

and Queensland). Rust is a major disease in the northern plains, so breeding for its resistance 141 

is one of the main objectives. A great deal of genetic diversity of rust resistance at the 142 

seedling stage has been found in the Australian collection of faba bean germplasm (Fig. 1). 143 

The first moderately rust resistant cultivar, Doza, was released for cultivation in the northern 144 

plains in 2008, followed by PBA Warda and PBA Nasma during 2012 and 2016, respectively 145 

(Pulse Australia 2017). Three rust resistance genes were reported in segregating populations 146 

from crosses of exotic (Ac1227#14908 and Ac1655) accessions and local genotype 147 

Doza#12034 (Ijaz and Adhikari 2016a) (Fig. 1). Two of these genes (from Ac1655 and 148 

Doza#12034) were independently dominant, along with possible additive response 149 

(Adhikari et al. 2016a), and were mapped onto two different chromosomes (Sudhesh et al. 150 

2016). However, the resistance in Ac1227#14908 was governed by complimentary gene 151 

action (Ijaz and Adhikari 2016b). 152 

The nomenclature for rust-resistance genes in faba bean is not uniform and coordinated. The 153 

Canadians named their genes fr, whereas the Spanish named theirs Uvf, so a universal system 154 

of naming the resistance genes and pathogen variants (pathotypes) is needed similar to that 155 

used for wheat (McIntosh et al. 1995). This will enable comparison and verification of 156 

different genes identified in different areas.  157 

Slow rusting: an insight into faba bean breeding 158 
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Several sources of slow rusting in faba bean have been reported (Conner and Bernier 1982d, 159 

Torres et al. 2006). Slow rusting limits the development and spread of infection, thus 160 

allowing the plant to outgrow the disease with little impact on productivity. Slow rusting or 161 

partial rust resistance has been reported in many crops, such as maize and sweet corn (Zea 162 

mays L.) (Hooker 1969; Groth et al. 1983), wheat (Singh et al. 2000) and barley (Hordeum 163 

vulgare L.) (Wilcoxson 1981). Slow rusting against U. viciae-fabae has also been identified 164 

in pea (Pisum sativum L.) (Chand et al. 2006) and lentil (Gupta and Singh 2010).  165 

Generally, slow rusting is considered as durable because of its stable expression and reduced 166 

selection pressure on the pathogen (Bond et al. 1994). Macroscopically, slow rusting in faba 167 

bean is characterized by reduced lesion size and infection frequency with a longer latent 168 

period (Sillero et al. 2000). Microscopy revealed that reduced hyphal growth inhibited 169 

haustorial maturation, thereby limiting the formation of sporulating colonies (Rubiales and 170 

Sillero 2003; Sillero and Rubiales 2002).  171 

Reduced yield losses (1-2%) were reported in a slow-rusting population compared to a 172 

susceptible population (61%) (Rashid et al. 1991) in faba bean. The area under the disease 173 

progress curve (AUDPC) provides a way to estimate slow rusting, and significant diversity 174 

in this trait has been reported in faba bean (Rashid and Bernier 1986b), lentil (Negussie et 175 

al. 2005) and pea (Singh et al. 2015). Low AUDPC in some accessions may not be entirely 176 

due to slow rusting because other factors, including cell wall thickness, number of stomata 177 

(Heath et al. 1990), temperature, leaf wetness and light (Joseph and Hering 1997) influence 178 

the disease development.  179 

Information on the genetic basis of slow rusting in faba bean is limited. Both cytoplasmic 180 

and nuclear genes have been implicated (Stoddard and Herath 2001). The non-181 

hypersensitive reaction is believed to be polygenic with minor effects, but such minor genes 182 

have not been identified or characterized. Torres et al. (2006) proposed studying this type of 183 

resistance using mapping populations and quantitative analysis, but no results have yet come 184 

to light. 185 

Understanding the pathogen: Uromyces viciae-fabae 186 

Uromyces, with about 600 species, is the second most important genus after Puccinia in the 187 

order Pucciniales (Maier et al. 2003). Puccinia species mainly infect grasses while 188 

Uromyces infects legumes. Genome sequence information is available for Puccinia 189 

striiformis f. sp. tritici (Pst) and Puccinia graminis f. sp. tritici (Pgt) (Cantu et al. 2013; 190 
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Duplessis et al. 2011; Zheng et al. 2013). Research activities have been concentrated on a 191 

very limited number of the 7,000 known rust fungi. Despite their ecological and economic 192 

values, little is known about the phylogeny within and between these groups. On the basis 193 

of sequences of the beta-tubulin 1 gene, a phylogeny showed that neither Puccinia nor 194 

Uromyces had evolved as a monophyletic group, and species of both fell into two distinct 195 

clades (Van der Merwe et al. 2007). Moreover, it was speculated that the pathogen genera 196 

diversified in parallel with their respective hosts under the situation when unrelated hosts 197 

met randomly in close proximity due to similar ecological needs. 198 

Faba bean rust is an autoicous and macrocyclic fungus exhibiting completes all five spores 199 

stages, telio-, pycnio- basidio-, aecio- and urediospores, in a single host (Mendgen and 200 

Deising 1993). Host-specialized isolates were characterized on the basis of distinct spore 201 

dimension and infection structure morphology (Emeran et al. 2005), suggesting that U. 202 

viciae-fabae may be divided into intraspecific groups with differential pathogenicity to these 203 

hosts (Rubiales et al. 2013). This intraspecific distribution was confirmed through RAPD 204 

DNA markers (Emeran et al. 2008). Therefore, Uromyces viciae-fabae sensu lato is 205 

apparently a species complex that cannot be divided into formae speciales. 206 

In addition to the knowledge of host diversity, understanding the pathogen is also a crucial 207 

step to ensure longevity of resistance. As faba bean rust is an obligate parasite with a sexual 208 

phase, new and virulent pathotypes can evolve frequently, thus requiring continuous genetic 209 

improvement to ensure that new cultivars are resistant to prevailing pathotypes. There is 210 

little evidence of faba bean rust pathogen diversity in Australia. Herath (2000) found that 211 

some isolates were generally less virulent than others, and showed some isozyme variation 212 

among these isolates, but further advances have been held back by the lack of differential 213 

hosts to characterise the various isolates, despite the early progress in Canada in this regard. 214 

It is essential that pathogen diversity be properly understood, including the implications for 215 

virulence, but the differentials developed in Spain (Avila et al. 2003) and Canada (Conner 216 

and Bernier 1982b) have not been used elsewhere, making it difficult to judge the 217 

effectiveness of one gene in other areas. Nine faba bean rust races were characterised from 218 

twelve faba bean lines on the basis of differential pathogenicity in Australia (Ijaz et al. 2017). 219 

Moreover, a binary nomenclature system (Steadman et al. 2002) for naming pathotypes is 220 

under development and will be available soon. These pathotypes are cryopreserved at the 221 

University of Sydney’s Plant Breeding Institute, Cobbitty, Australia. 222 
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Link et al. (2014) provided an early insight into the genomic architecture of U. viciae-fabae. 223 

Sequencing was performed by using HiSeq2000 with a 500 nt library. Three different 224 

estimates of genome size were made: with 15-mer analysis, genome size was estimated at 225 

329 Mb, whereas 17-mer analysis predicted a genome size of 422 Mb and filtered assembly 226 

estimated 216 Mb. Flow cytometry on the same isolate generated a size of 379 Mb (Tavares 227 

et al. 2014). Thus, the estimate of the actual genome size is in the range of 330 and 422 Mb, 228 

making it about 4 times the size of P. graminis f. sp. tritici, indicating a high significance of 229 

transposable elements (TE) (Duplessis et al. 2011). Link et al. (2014) identified numerous 230 

families of secreted proteins and candidate effectors, and reported 62 genes encoding 231 

proteins secreted from haustoria that have presumed roles in infection and specificity of U. 232 

viciae-fabae.  233 

Deployment of resistance genes with major effects 234 

Disease resistance is generally inherited as a dominant factor in natural populations (Barrett 235 

1985), as natural selection acts on it favourably. Resistance based on major hypersensitive 236 

genes is usually considered non-durable (Stuthman et al. 2007) according to the gene-for-237 

gene hypothesis. Hypersensitivity has been observed among faba bean genotypes, where 238 

necrosis appears during the later stages of rust proliferation and restricts fungal growth by 239 

controlled cell death (Sillero et al. 2000; Torres et al. 2006). Hypersensitivity is easily 240 

detectable with specific pathotypes (Emeran et al. 2005; Rojas Molina et al. 2006). Avila et 241 

al. (2003) and Adhikari et al. (2016b) showed that this type of hypersensitive response in 242 

faba bean is under the control of major genes. Nevertheless, the longevity of major genes in 243 

faba bean is less understood than in wheat as there is limited knowledge on pathogen 244 

variability. If these resistance genes of major effect can be deployed in combination through 245 

gene pyramiding, multiline cultivars or gene mixtures, the durability of resistance can be 246 

increased. 247 

a. Pyramiding resistance genes 248 

Gene pyramiding is the simultaneous deployment of more than one R gene in the same 249 

cultivar. Such R gene pyramids can provide long-lasting resistance because multiple 250 

simultaneous mutational events in avr genes are required to elicit susceptibility in the host. 251 

A particular gene combination (Avr/R) will remain effective as long as matching virulence 252 

is not widespread in the population, but it is difficult to identify individual R genes in a 253 
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complex pyramid unless virulent pathotypes or specific DNA markers are available (Pink 254 

2002).  255 

Gene pyramiding provides an opportunity to achieve a ‘clean crop’ and ensures crop 256 

uniformity because all genes are deployed in a uniform genetic background. Nevertheless, 257 

R gene pyramids are vulnerable to virulence if the individual components of resistance are  258 

deployed singly in other cultivars grown in the same region (Parlevliet 1997). The R gene 259 

in a pyramid exerts a strong unidirectional selection pressure against the matching virulence 260 

in a pathogen population. Therefore, pathogen monitoring to identify new virulent 261 

pathotypes is essential to minimise risk through early warning. The number of R genes in a 262 

pyramid should determine the spread of emerging virulent pathotypes in a pathogen 263 

population (Kolmer 1992; Mundt 1991), but conflicting results have been reported. For 264 

example, Mundt (1991) reported that an R gene pyramid failed to provide resistance against 265 

stem rust in wheat. This breakdown of resistance started a debate over the value of R-gene 266 

pyramids. Although there are some examples of cultivars where the R gene pyramid ensured 267 

durability of resistance, there is no clear association between the number of R genes in a 268 

pyramid and durability. The successful use of gene pyramiding against rust in faba bean has 269 

not been reported, but two recently reported (Adhikari et al. 2016a) seedling rust resistance 270 

genes provide a potential for pyramiding because the combination of both genes prevented 271 

fungal sporulation (Ijaz et al. Unpubl. data) (Fig.1). This kind of very strong resistant 272 

infection type has not been witnessed before in faba bean. 273 

b. Using multilines and crop mixtures 274 

In comparison to domestic crops, wild species are more heterogeneous for resistance genes 275 

and thus avoid disease epidemics (Bevan et al. 1993; Okamura and Ouchi 2007). The most 276 

appropriate breeding strategies that utilize crop diversity are multiline development 277 

(Browning and Frey 1969) and cultivar mixtures (Wolfe and Barrett 1980). A multiline is a 278 

composite of agronomically similar genotypes that differ for  a few traits, such as resistance 279 

to different pathogen races (Jensen 1952). Wolfe (1985) defined a cultivar mixture as a 280 

“mixture of cultivars that vary for many characters including disease resistance, but have 281 

sufficient similarities to be grown together”.  282 

Despite the documented benefits of growing cultivar mixtures over pure stands (Wolfe and 283 

Finckh 1997), their commercial impact has been low. Lack of uniformity can influence seed 284 

quality and certification, leading to legislative constraints on seed production and 285 
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distribution (Wolfe et al. 1992). Farmers often oppose growing mixtures because of uneven 286 

crop appearance. There are examples of large scale utilization of mixtures in barley (Wolfe 287 

and McDermott 1994), wheat (Garrett and Mundt 1999; Wolfe 1985) and rice (Skamnioti 288 

and Gurr 2009; Zhu et al. 2000), but their recent use for disease management is limited. 289 

Resistance to rust has never been deployed in mixtures or multilines in faba bean, largely 290 

because resistance is poorly characterized in this crop, but there is no reason to believe that 291 

multilines or mixtures will not work, as our understanding of genetic diversity for resistance 292 

increases. It is important to initiate investigation by testing a mixture of rust-susceptible and 293 

-resistant faba bean genotypes for disease suppression and yield stability.  294 

Using systemically acquired resistance (SAR) 295 

Systemic acquired resistance (SAR) is a “whole plant” resistance response that is usually 296 

triggered under biotic and abiotic stresses (Walters and Murray 1992). SAR is accompanied 297 

by the up-regulation of large numbers of so-called pathogenesis-related (PR) genes 298 

(Melchers and Stuiver 2000) that have an important role in defence against fungal infection 299 

and genes encoding fungitoxic or fungistatic proteins provide resistance against invading 300 

fungi (Cornelissen and Melchers 1993). Murray and Walters (1992) reported that inoculation 301 

of lower leaves of faba bean with rust spores increased resistance in the upper leaves and 302 

enhanced their photosynthesis, as shown by the significantly increased accumulation of 14C-303 

labelled assimilate after 14CO2 was fed to the upper leaves. However, the virulence of the 304 

inoculated rust pathotype was unknown. Systemic resistance in faba bean can be induced by 305 

exposure of plants to certain chemicals. Application of salicylic acid or benzo-(1,2,3)-306 

thiadiazole-7-carbothionic acid (benzothiadiazole, BTH) increased the resistance of faba 307 

bean leaves to rust, Ascochyta blight (Ascochyta fabae Speg.) and broomrape (Orobanche 308 

crenata Forsk.) (Sillero et al. 2012). Similarly, foliar application of BTH and DL-β-309 

aminobutyric acid (BABA) to pea significantly reduced pea rust (Uromyces pisi) infection 310 

levels locally and systemically (Barilli et al. 2010). Cheng et al. (2012) characterized the 311 

resistance mechanism in faba bean against Puccinia striiformis f. sp. tritici (Pst) as non-host. 312 

Although no symptoms were visible on inoculated leaves, microscopy showed that the 313 

fungus successfully located the stomata, but failed to develop mature haustoria. 314 

Transcriptomic expression revealed the up-regulation of seven defence-related genes during 315 

Pst infection (Table 2). In the light of these observations, and the strong similarities in 316 

mechanisms of resistance to adapted and unadapted pathogens, SAR in faba bean may be 317 
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worth studying in greater detail. When the PR genes are validated, they can be used against 318 

rust.  319 

Molecular breeding technologies 320 

Early genetic studies in crops were based on morphological, cytological and biochemical 321 

evaluation (Xu 2010). A sequence of DNA markers, from Restriction Fragment Length 322 

Polymorphism (RFLP), through Amplified Fragment Length Polymorphism (AFLP), 323 

Random Amplified Polymorphic DNA (RAPD), and Simple Sequence Repeats (SSR) to 324 

Single Nucleotide Polymorphisms (SNP) has allowed increasingly high resolution and 325 

closer linkage to the traits of interest, which can assist gene tracking during selection and 326 

breeding (Collard et al. 2005).  Markers that are closely linked (less than 5 cM of genetic 327 

distance) with the gene of interest reduce the probability of recombination and can provide 328 

reliable selection in crop improvement (Jiang 2013). Use of flanking markers increases the 329 

probability of success because of the low likelihood of double crossovers in a short length 330 

of chromosome. MAS is a practical and effective way to pyramid rust resistance genes if the 331 

genes and closely linked markers are available (Servin et al. 2004) and is already in use for 332 

other traits such as vicine-convicine content (Khazaei et al. 2015). Association mapping and 333 

linkage mapping are powerful tools used for identifying QTLs and genes responsible for a 334 

particular phenotype (Collard and Mackill 2008). To date, only one of the successful 335 

mapping efforts in faba bean is relevant to rust resistance (Avila et al. 2003), where bulk 336 

segregant analysis (BSA) was done to tag RAPD markers linked to the hypersensitive 337 

response in faba bean line 2N-52 against rust race 1 in Spain. Three RAPD markers, namely 338 

OPD13736, OPL181032 and OPI20900, were mapped in coupling phase to the resistance gene 339 

Uvf-1. Two additional markers were linked to the gene in repulsion at distances of 9.9 cM 340 

(OPP021171) and 11.5 cM (OPR07930). The line 2N-52 used in this study was resistant to 341 

seven other rust isolates (2, 4, 5, 8, 9, 10 and 13) (Emeran et al. 2001), but this broad 342 

resistance was not solely attributable to gene Uvf-1.  343 

Recent advances in the next generation sequencing (NGS) technologies provide a platform 344 

to sequence a large volume of individuals efficiently and cost-effectively (Morozova and 345 

Marra 2008). This advancement opens a new era in agricultural research including the 346 

identification of key genes correlated with breeding traits through SNPs and Genome-Wide 347 

Association Analysis Studies (GWAS) (Lam et al. 2010). Another utility of sequence data 348 

is to identify flanking SSR regions to develop locus-specific markers for downstream 349 

genotyping. In faba bean, the  first major contribution was the release of 5000 Expressed 350 
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Sequence Tags (EST) from the early to mid-developing embryo of broad bean cultivar 351 

‘Windsor’ (Ray and Georges 2010). Yang et al. (2012) constructed a library of 125,559 352 

putative SSR sequences and determined a set of 28,503 primers, of which 15,094 primers 353 

showed polymorphism among 32 diverse faba bean accessions. The observed heterozygosity 354 

ranged from 0.0908 to 0.840. The validation of these markers based on Nei’s genetic 355 

distance showed their high quality and effectiveness. Kaur et al. (2014b) undertook 454 356 

sequencing of the transcriptome to underpin SSR to significantly increase the volume of 357 

transcriptome data in mixed genotypes. In addition, Kaur et al. (2014a) evaluated inter- and 358 

intra-population diversity in 45 diverse accessions of faba bean by using a set of 768 359 

genome-wide SNP markers, of which 657 were successfully amplified. The genetic structure 360 

of these accessions was analysed through a neighbour-joining (NJ) dendrogram that 361 

categorized them into two major groups and several sub-groups. Group I was comprised of 362 

accessions from Ecuador, Australia and ICARDA, Group IIA consisted of African and 363 

European materials, whereas Groups IIB and IIC were predominantly of Australian origin. 364 

These results confirmed that a high level of heterozygosity is present, presumably due to the 365 

partial allogamous nature of the species. Subsequently, transcriptome studies were focused 366 

on multiple inbred lines (Ocaña et al. 2015) as well as multiple tissues (Ray et al. 2015). The 367 

deepest transcriptome coverage yet produced through Illumina sequencing library of mixed 368 

tissues from cultivar ‘Fiord’ (Arun-Chinnappa and McCurdy 2015; Zhang et al. 2015), 369 

which was the first released cultivar in Australia and was highly susceptible to all known 370 

variants of rust. These available transcript datasets can be used to compare with 371 

transcriptomes of resistant lines to identify transcripts conferring resistance. Webb et al. 372 

(2016) developed and validated 845 SNPs by using NGS. Each SNP was assigned by 373 

BLAST analysis to a single Medicago orthologue and a set of 757 markers was used to 374 

genotype six mapping populations. The resulting linkage maps were merged into a single 375 

consensus map of 687 SNPs on six linkage groups, each corresponding to one chromosome. 376 

Substantial collinearity was found with the fully sequenced genome of barrel medic 377 

(Medicago truncatula L.), allowing relatively easy prediction of gene contents. Recently, 378 

using Illumina paired end sequencing, genomic reads were assembled sub de novo in to 379 

contigs of size 50-5000 bp, out of which, over 85% sequences did not align with known 380 

gene, representing ~10% known repetitive genetic elements (Cooper et al. 2017). 381 

At present, significant transcriptome datasets are available in the arsenal of the faba bean 382 

breeders. These recent advances in faba bean genomics provide background for successful 383 
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manipulation of genomics and proteomics tools. When rust response phenotypes are linked 384 

with genotypes at a high level of resolution, resistance breeding will accelerate through the 385 

high selection efficiency that can then be used in pyramiding genes and constructing 386 

multilines or mixtures. 387 

Conclusion 388 

Knowledge is growing about host-pathogen interactions, the diversity of host resistance 389 

genes and their genetic bases, and pathogen variation of faba bean rust. The resistance 390 

mechanisms in faba bean germplasm are well established as either slow-rusting or 391 

hypersensitive responses. Closely linked molecular markers for both types of resistance are 392 

needed for the successful development of durable cultivars. Although the progenitor of faba 393 

bean has not yet been identified, enough variation for rust resistance seems to be present in 394 

the cultivated species. Although Uromyces is the second most important rust genus after 395 

Puccinia, its physiology and genetics have received little attention.  396 

Gene pyramiding is a possible avenue for deploying resistance genes, but needs to be 397 

underpinned by an extensive search for new rust resistance sources and the concurrent 398 

identification of genes and linked molecular markers. With current mapping efforts on 399 

known seedling genes for rust resistance, marker-assisted gene pyramiding can be 400 

considered as a viable strategy in resistance breeding. However, continuous monitoring will 401 

be needed to keep an eye on the evolution of virulent pathotypes against these effective 402 

resistance genes. As the virulence evolves, the pyramid will have to be reconstructed with 403 

new resistance sources to avoid epidemics. Although mixtures or multilines can provide 404 

some measure of resistance, their successful commercialisation requires that they should 405 

provide more benefits to farmers than provided by conventional cultivars. Until now, whole 406 

plant resistance or antifungal gene strategy is unable to provide a strong successful reference 407 

in applied breeding, but with growing understanding, it has potential in the future. Moreover, 408 

genes of systemically acquired resistance against a non-host pathogen have been well 409 

studied in faba bean, and have potential for use against host pathogens such as rust.  410 

Genomics and biotechnology have been little used in breeding faba bean for rust resistance 411 

because of it being a minor crop with a large genome size, and the resistance is complex in 412 

nature. Genetic and genomic knowledge has advanced far enough now to assist in the 413 

identification of genes and their successful deployment in this crop, and we can expect soon 414 

to have plenty of genome-wide SNP variants for rust resistance across diverse backgrounds. 415 
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In parallel, these datasets can also be used for gene mapping, gene cloning and successful 416 

gene transformation. We can anticipate that plant breeders will be able to use genomics to 417 

identify the resistance with high accuracy, to ensure a rust-free crop in the future.  418 

  419 
420 
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Table 1 Reported rust resistant germplasm resources in Australia. 876 

Australian 
accession No. 

Donor 
Accession No. Source Country Reference 

AC341 ILB53 ICARDA England Rashid and Bernier (1984) 

AC408 ILB159 ICARDA Greece Rashid and Bernier (1984) 

AC466 BPL7 ICARDA Jordan Rashid and Bernier (1984) 

AC472 ILB226 ICARDA Turkey Bond et al. (1994) 

AC479 BPL8 ICARDA Jordan Rashid and Bernier (1984) 

AC481 BPL 260 ICARDA Greece Bond et al. (1994) 

AC547 ILB318 ICARDA England Bond et al. (1994) 

AC628 BPL8 ICARDA Jordan Rashid and Bernier (1984) 

AC630 ILB403 ICARDA Tunisia Bond et al. (1994) 

AC631 BPL260 ICARDA Greece Rashid and Bernier (1984) 

AC638 ILB411 ICARDA England Bond et al. (1994) 

AC647 ILB420 ICARDA Iran Rashid and Bernier (1984) 

AC658 ILB431 ICARDA Algeria Rashid and Bernier (1984) 

AC832 BPL 309 ICARDA Turkey Bond et al. (1994) 

AC848 BPL406 ICARDA Spain Bond et al. (1994) 

AC849 BPL417 ICARDA Spain Bond et al. (1994) 

AC858 BPL484 ICARDA Uruguay Bond et al. (1994) 

AC859 BPL427 ICARDA Spain Bond et al. (1994) 

AC860 BPL533 ICARDA USA Bond et al. (1994) 

AC983 BPL490 ICARDA Spain Bond et al. (1994) 

AC984 BPL524 ICARDA Japan Bond et al. (1994) 

AC999 BPL539 ICARDA China Bond et al. (1994) 

AC1044 BPL261 ICARDA Greece Bond et al. (1994) 

AC1045 BPL263 ICARDA Greece Bond et al. (1994) 

AC1269 BPL 710 ICARDA Ecuador Bond et al. (1994) 

AC1272 BPL 1179 ICARDA Ecuador Bond et al. (1994) 
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AC1443 BPL 627 ICARDA Spain Bond et al. (1994) 

AC1652 2N-34 Spanish 
germplasm Spain Bernier and Conner (1982) 

AC1653 2N-52 Spanish 
germplasm Spain Bernier and Conner (1982) 

AC1654 VF-176 Spanish 
germplasm Spain Sillero et al. (2000) 

AC1655 V-300 Spanish 
germplasm Spain Sillero et al. (2000) 

AC1656 V-1271 Spanish 
germplasm Spain Sillero et al. (2000) 

AC1657 V-1272 Spanish 
germplasm Spain Sillero et al. (2000) 

AC1658 V-1273 Spanish 
germplasm Spain Sillero et al. (2000) 
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Table 2 Reported defence-related candidate genes in faba bean (Cheng et al. 2012) 878 

Gene Description Related species Arabidopsis homolog 

(TAIR BLAST) 

 

PR1 

PR2 

PR5 

PR10 

Basal resistance 

Pathogenesis-related gene 1 

Beta-1,3 endoglucanase 

Thaumatin like protein 

Pathogenesis-related gene 10 

 

Pisum sativum 

Pisum sativum 

Medicago truncatula 

Pisum sativum 

 

AT2G14610.1 

AT3G57260.1 

- 

No sequence 

 

SOS 

CAT 

Oxidative stress responses 

Superoxide dismutase 

Catalase 

 

Pisum sativum 

Pisum sativum 

 

AT5G18100.1 

AT1G20620.1 

 

GSL5 

Papillary callose formation 

Glucan synthase-like 5 

 

Medicago truncatula 

 

AT4G03550.1 
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 881 
Fig. 1 Characterisation of three seedling resistance types in faba bean germplasm. 882 

AC1227#14908 gave higher reaction type (complementary gene), Ac1655 produced small 883 

pustules with necrotic lesions, Doza#12034 is showing aggressive chlorosis leading to leaf 884 

death, Ac1655 × Doza#12034 hybrid (F1) completely inhibited fungal sporulation and Fiord 885 

showed large sporulating pustules without necrosis or chlorosis against isolate Uvf-8. 886 


