15 research outputs found

    Cost and performance of some carbon capture technology options for producing different quality CO₂ product streams

    Get PDF
    A techno-economic assessment of power plants with CO2 capture technologies with a focus on process scenarios that deliver different grades of CO2 product purity is presented. The three leading CO2 capture technologies are considered, namely; oxyfuel combustion, pre-combustion and post-combustion capture. The study uses a combination of process simulation of flue gas cleaning processes, modelling with a power plant cost and performance calculator and literature values of key performance criteria in order to evaluate the performance, cost and CO2 product purity of the considered CO2 capture options. For oxyfuel combustion capture plants, three raw CO2 flue gas processing strategies of compression and dehydration only, double flash system purification and distillation purification are considered. Analysis of pre-combustion capture options is based on integrated gasification combined cycle plants using physical solvent systems for capturing CO2 and sulfur species via three routes; co-capture of sulfur impurities with the CO2 stream using Selexol™ solvent, separate capture of CO2 and sulfur impurities using Selexol™, and Rectisol® solvent systems for separate capture of sulfur impurities and CO2. Analysis of post-combustion capture plants was made with and without some conventional pollution control devices. The results highlight the wide variation in CO2 product purity for different oxyfuel combustion capture scenarios and the wide cost variation for the pre-combustion capture scenarios. The post-combustion capture plant with conventional pollution control devices offers high CO2 purity (99.99 mol%) for average cost of considered technologies. The calculations performed will be of use in further analyses of whole chain CCS for the safe and economic capture, transport and storage of CO2

    The range and level of impurities in CO2 streams from different carbon capture sources

    Get PDF
    For CO2 capture and storage deployment, the impact of impurities in the gas or dense phase CO2 stream arising from fossil fuel power plants, or large scale industrial emitters, is of fundamental importance to the safe and economic transportation and storage of the captured CO2. This paper reviews the range and level of impurities expected from the main capture technologies used with fossil-fuelled power plants in addition to other CO2 emission-intensive industries. Analysis is presented with respect to the range of impurities present in CO2 streams captured using pre-combustion, post-combustion and oxy-fuel technologies, in addition to an assessment of the different parameters affecting the CO2 mixture composition. This includes modes of operation of the power plant, and different technologies for the reduction and removal of problematic components such as water and acid gases (SOx/NOx). A literature review of data demonstrates that the purity of CO2 product gases from carbon capture sources is highly dependent upon the type of technology used. This paper also addresses the CO2 purification technologies available for the removal of CO2 impurities from raw oxy-fuel flue gas, such as Hg and non-condensable compounds. CO2 purities of over 99% are achievable using post-combustion capture technologies with low levels of the main impurities of N2, Ar and O2. However, CO2 capture from oxy-fuel combustion and integrated gasification combined cycle power plants will need to take into consideration the removal of non-condensables, acid gas species, and other contaminants. The actual level of CO2 purity required will be dictated by a combination of transport and storage requirements, and process economics

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Estimating the line packing time for pipelines transporting carbon dioxide

    No full text
    During the operation of pressurised pipelines transporting compressible fluids, line packing is employed as an effective method that uses the pipeline itself as a buffer storage, compensating for fluctuations in the fluid supply or demand. While in large-capacity natural gas transmission systems, reaching maximum operating pressures during line packing is usually not of practical concern, in small capacity pipelines transporting low-compressibility fluids, such as liquid or dense-phase CO2, line packing can occur quickly, and therefore, estimating the line packing times becomes important to ensure avoiding exceeding the pipeline maximum allowable operating pressure. In this study, a correlation for estimating the line packing time is derived from the transient mass balance in the pipeline. The proposed correlation accounts for the pipeline overall dimensions, operating pressure and temperature, and the fluid properties, namely density and the expansion coefficient. The correlation is also adopted for the calculation of pipeline unpacking times caused by unbalanced discharge from a pipeline. A verification study on line packing in a dense-phase CO2 pipeline shows that within the ranges tested, the proposed correlation estimates conservatively the line packing times with ca. 15 % deviation from the results of simulations obtained using a rigorous transient pipeline flow model. The proposed correlation is also verified against predictions obtained using a parabolic flow model and is recommended for estimating line packing times for both dense-phase and gas-phase CO2 at pressures and temperatures in the ranges 2 - 12 MPa and 280 – 330 K, respectively. The limitations of the proposed line packing time correlation are discussed

    Fracture fixation in the operative management of hip fractures (FAITH): an international, multicentre, randomised controlled trial

    No full text
    Background Reoperation rates are high after surgery for hip fractures. We investigated the effect of a sliding hip screw versus cancellous screws on the risk of reoperation and other key outcomes. Methods For this international, multicentre, allocation concealed randomised controlled trial, we enrolled patients aged 50 years or older with a low-energy hip fracture requiring fracture fixation from 81 clinical centres in eight countries. Patients were assigned by minimisation with a centralised computer system to receive a single large-diameter screw with a side-plate (sliding hip screw) or the present standard of care, multiple small-diameter cancellous screws. Surgeons and patients were not blinded but the data analyst, while doing the analyses, remained blinded to treatment groups. The primary outcome was hip reoperation within 24 months after initial surgery to promote fracture healing, relieve pain, treat infection, or improve function. Analyses followed the intention-to-treat principle. This study was registered with ClinicalTrials.gov, number NCT00761813. Findings Between Mar
    corecore