11 research outputs found

    Development of a combined heart-cut and comprehensive two-dimensional gas chromatography system to extend the carbon range of volatile organic compounds analysis in a single instrument

    Get PDF
    The majority of atmospheric measurements of volatile organic compounds (VOCs) are usually limited to a small range, either in volatility or time resolution. A combined heart-cut gas chromatography (GC) with comprehensive two-dimensional GC (GC×GC) instrument was developed, specifically to increase the number of VOCs analysed using a single instrument. The system uses valve based modulation and was fully automated, making it suitable for use in the field. A laboratory comparison to an existing dual-channel GC (DC-GC) instrument demonstrated that this new GC-GC×GC can accurately measure atmospheric mixing ratios of C -C VOC species with a wide range of functionalities. Approximately hourly field measurements were conducted at a remote marine atmospheric research station in Bachok, Malaysia. This region was shown to be influenced by clean marine air masses, local anthropogenic and biogenic emission sources and aged emissions transported from highly polluted South East Asian regions. A dramatic shift in air mass direction was observed each day associated with the development of a sea breeze, which influenced the diurnal profiles of species measured at the Bachok site. A proton-transfer-reaction mass spectrometer (PTR-MS) was also deployed at Bachok and compared to the new GC-GC×GC instrument. Overall, the GC-GC×GC instrument has been shown to perform well in lab comparisons and during field observations. This represents a good compromise between volatility and high complexity measurements of VOCs

    A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer.

    Get PDF
    Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10-13 cm3 molecule-1 s-1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10-13 cm3 molecule-1 s-1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/- 0.8 nmol m-2 d-1 for CH2I2 and 3.7 +/- 0.8 nmol m-2 d-1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2-4 × 10-13 cm3 molecule-1 s-1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.LJC acknowledges NERC (NE/J00619X/1) and the National Centre for Atmospheric Science (NCAS) for funding. The laboratory work was supported by the NERC React-SCI (NE/K005448/1) and RONOCO (NE/F005466/1) grants.This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s10874-015-9320-

    Development of comprehensive two-dimensional gas chromatography for the analysis of volatile organic compounds in the atmosphere

    No full text
    The use of comprehensive two-dimensional gas chromatography (GC x GC) for the analysis of volatile organic compounds in the atmosphere will be presented. Three different systems have been used and developed each suited to a particular aspect of atmospheric VOC analysis. A method for the offline analysis of whole air samples using a commercial GC x GC system coupled to a time-of-flight mass spectrometer (TOFMS) has been developed and has been used during an aircraft campaign. Calibration and precision data for 60 hydrocarbon species are presented, with %RSD ranging from 0.56 to 14.78 % and LOD ranging from 0.01 - 0.61 pptv for a l L sample. The developed method was used during the RONOCO campaign and data for 39 hydrocarbon species re- ported. The system allowed for an investigation into the aromatic complexity of the samples and the effect of these aromatic species on atmospheric reactivity was also investigated. Further investigation into the VOC complexity in the atmosphere was also performed. The development of a portable valve based GC x GC system is also presented. The system uses total transfer methodology to allow for sensitive cryogen free modula- tion. Analysis of gasoline and tea tree was performed and the performance of the system was assessed using gasoline. The instrument was coupled to a thermal des- orption unit for the analysis of atmospheric VOCs and gave LODs of between 2-4 pptv for selected hydrocarbons in a l L sample. Further development of the system making it suitable for fieldwork is also presented. A third miniaturised GC x GC system has been developed, particularly suited for the analysis of biogenic VOCs. The system is compact, low power and cryogen free, with the large GC oven replaced with a novel direct column heating method. The small footprint, power and consumable requirement make this system suitable for deployment for analysis in remote locations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Improving the Quantification of Secondary Organic Aerosol Using a Microflow Reactor Coupled to HPLC-MS and NMR to Manufacture Ad Hoc Calibration Standards

    No full text
    Secondary organic aerosol (SOA) is a key uncertainty in quantifying the impact of humans on Earth’s climate. SOA is a complex mixture of oxidized organic species, and a fundamental hurdle in determining its composition is the lack of authentic standards for comparison and quantification. Organic synthesis can be used to produce pure standards, but is limited to compounds for which there is a degree of confidence in the proposed structure and can be expensive and time-consuming. In this study, a flow reactor was developed to form SOA in sufficient quantities to be collected and pure compounds subsequently isolated from the mixture using semipreparative high performance liquid chromatography. The purity and yield of each isolated compound were obtained using proton nuclear magnetic resonance (<sup>1</sup>H NMR), whereas molecular formulas were confirmed by high resolution Fourier transform ion cyclotron mass spectrometry (FTICR-MS). The effectiveness of the methodology has been evaluated here by using α-pinene as the precursor because it is the monoterpene with the most well characterized SOA chemistry. Eleven individual α-pinene SOA compounds were produced from α-pinene oxidation experiments and used for quantitative analysis of SOA formed during chamber experiments carried out close to ambient conditions. These compounds represented 25% of the total SOA mass, a significant improvement in mass balance compared to previous studies. This relatively simple approach may be extended to produce other SOA components not available commercially to improve quantification of aerosol sources

    Improving the Quantification of Secondary Organic Aerosol Using a Microflow Reactor Coupled to HPLC-MS and NMR to Manufacture Ad Hoc Calibration Standards

    No full text
    Secondary organic aerosol (SOA) is a key uncertainty in quantifying the impact of humans on Earth’s climate. SOA is a complex mixture of oxidized organic species, and a fundamental hurdle in determining its composition is the lack of authentic standards for comparison and quantification. Organic synthesis can be used to produce pure standards, but is limited to compounds for which there is a degree of confidence in the proposed structure and can be expensive and time-consuming. In this study, a flow reactor was developed to form SOA in sufficient quantities to be collected and pure compounds subsequently isolated from the mixture using semipreparative high performance liquid chromatography. The purity and yield of each isolated compound were obtained using proton nuclear magnetic resonance (<sup>1</sup>H NMR), whereas molecular formulas were confirmed by high resolution Fourier transform ion cyclotron mass spectrometry (FTICR-MS). The effectiveness of the methodology has been evaluated here by using α-pinene as the precursor because it is the monoterpene with the most well characterized SOA chemistry. Eleven individual α-pinene SOA compounds were produced from α-pinene oxidation experiments and used for quantitative analysis of SOA formed during chamber experiments carried out close to ambient conditions. These compounds represented 25% of the total SOA mass, a significant improvement in mass balance compared to previous studies. This relatively simple approach may be extended to produce other SOA components not available commercially to improve quantification of aerosol sources

    Atmospheric ethanol in London and the potential impacts of future fuel formulations

    No full text
    There is growing global consumption of non-fossil fuels such as ethanol made from renewable biomass. Previous studies have shown that one of the main air quality disadvantages of using ethanol blended fuels is a significant increase in the production of acetaldehyde, an unregulated and toxic pollutant. Most studies on the impacts of ethanol blended gasoline have been carried out in the US and Brazil, with much less focus on the UK and Europe. We report time resolved measurements of ethanol in London during the winter and summer of 2012. In both seasons the mean mixing ratio of ethanol was around 5 ppb, with maximum values over 30 ppb, making ethanol currently the most abundant VOC in London air. We identify a road transport related source, with ‘rush-hour’ peaks observed. Ethanol is strongly correlated with other road transportrelated emissions, such as small aromatics and light alkanes, and has no relationship to summer biogenic emissions. To determine the impact of road transport-related ethanol emission on secondary species (i.e. acetaldehyde and ozone), we use both a chemically detailed box model (incorporating the Master Chemical Mechanism, MCM) and a global and nested regional scale chemical transport model (GEOS-Chem), on various processing time scales. Using the MCM model, only 16% of the measured acetaldehyde was formed from ethanol oxidation. However, the model significantly underpredicts the total levels of acetaldehyde, indicating a missing primary emission source, that appears to be traffic-related. Further support for a primary emission source comes from the regional scale model simulations, where the observed concentrations of ethanol and acetaldehyde can only be reconciled with the inclusion of large primary emissions. Although only constrained by one set of observations, the regional modelling suggests a European ethanol source similar in magnitude to that of ethane (60 Gg yr–1) and greater than that of acetaldehyde (10 Gg yr–1). The increased concentrations of ethanol and acetaldehyde from primary emissions impacts both radical and NOx cycling over Europe, resulting in significant regional impacts on NOy speciation and O3 concentrations, with potential changes to human exposure to air pollutants

    A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS) : linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine

    No full text
    The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry–climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993–2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements – including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model–measurement correlation (r  ≥  0.7) at most sites. In a given model, the absolute model–measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2Br2). In general, the models reproduce observations of CHBr3 and CH2Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific well. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2Br2) most elevated over the tropical western Pacific during boreal winter. The models also indicate the Asian monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models. We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2Br2 of 2.0 (1.2–2.5) ppt,  ∼  57 % larger than the best estimate from the most recent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. The transport-driven interannual variability in the annual mean bromine SGI is of the order of ±5 %, with SGI exhibiting a strong positive correlation with the El Niño–Southern Oscillation (ENSO) in the eastern Pacific. Overall, our results do not show systematic differences between models specific to the choice of reanalysis meteorology, rather clear differences are seen related to differences in the implementation of transport processes in the models
    corecore