157 research outputs found
Association of chemokine receptor gene (CCR2-CCR5) haplotypes with acquisition and control of HIV-1 infection in Zambians
<p>Abstract</p> <p>Background</p> <p>Polymorphisms in chemokine (C-C motif) receptors 2 and 5 genes (<it>CCR2 </it>and <it>CCR5</it>) have been associated with HIV-1 infection and disease progression. We investigated the impact of <it>CCR2-CCR5 </it>haplotypes on HIV-1 viral load (VL) and heterosexual transmission in an African cohort. Between 1995 and 2006, cohabiting Zambian couples discordant for HIV-1 (index seropositive and HIV-1 exposed seronegative {HESN}) were monitored prospectively to determine the role of host genetic factors in HIV-1 control and heterosexual transmission. Genotyping for eight <it>CCR2 </it>and <it>CCR5 </it>variants resolved nine previously recognized haplotypes. By regression and survival analytic techniques, controlling for non-genetic factors, we estimated the effects of these haplotypic variants on a) index partner VL, b) seroconverter VL, c) HIV-1 transmission by index partners, d) HIV-1 acquisition by HESN partners.</p> <p>Results</p> <p>Among 567 couples, 240 virologically linked transmission events had occurred through 2006. HHF*2 homozygosity was associated with significantly lower VL in seroconverters (mean beta = -0.58, log<sub>10 </sub><it>P </it>= 0.027) and the HHD/HHE diplotype was associated with significantly higher VL in the seroconverters (mean beta = 0.54, log<sub>10 </sub><it>P </it>= 0.014) adjusted for age and gender in multivariable model. HHD/HHE was associated with more rapid acquisition of infection by the HESNs (HR = 2.0, 95% CI = 1.20-3.43, <it>P </it>= 0.008), after adjustments for index partner VL and the presence of genital ulcer or inflammation in either partner in Cox multivariable models. The HHD/HHE effect was stronger in exposed females (HR = 2.1, 95% CI = 1.14-3.95, <it>P </it>= 0.018).</p> <p>Conclusions</p> <p>Among Zambian discordant couples, HIV-1 coreceptor gene haplotypes and diplotypes appear to modulate HIV-1 VL in seroconverters and alter the rate of HIV-1 acquisition by HESNs. These associations replicate or resemble findings reported in other African and European populations.</p
Effect of a Single Amino Acid Change in MHC Class I Molecules on the Rate of Progression to AIDS
Background From studies of genetic polymorphisms and the rate of progression from human immunodeficiency virus type 1 (HIV-1) infection to the acquired immunodeficiency syndrome (AIDS), it appears that the strongest susceptibility is conferred by the major-histocompatibility-complex (MHC) class I type HLA-B*35,Cw*04 allele. However, cytotoxic T-lymphocyte responses have been observed against HIV-1 epitopes presented by HLA-B*3501, the most common HLA-B*35 subtype. We examined subtypes of HLA-B*35 in five cohorts and analyzed the relation of structural differences between HLA-B*35 subtypes to the risk of progression to AIDS. Methods Genotyping of HLA class I loci was performed for 850 patients who seroconverted and had known dates of HIV-1 infection. Survival analyses with respect to the rate of progression to AIDS were performed to identify the effects of closely related HLAB* 35 subtypes with different peptide-binding specificities.
Results HLA-B*35 subtypes were divided into two groups according to peptide-binding specificity: the HLA-B*35-PY group, which consists primarily of HLAB* 3501 and binds epitopes with proline in position 2 and tyrosine in position 9; and the more broadly reactive HLA-B*35-Px group, which also binds epitopes with proline in position 2 but can bind several different amino acids (not including tyrosine) in position 9. The influence of HLA-B*35 in accelerating progression to AIDS was completely attributable to HLAB* 35-Px alleles, some of which differ from HLA-B*35- PY alleles by only one amino acid residue.
Conclusions This analysis shows that, in patients with HIV-1 infection, a single amino acid change in HLA molecules has a substantial effect on the rate of progression to AIDS. The different consequences of HLA-B*35-PY and HLA-B*35-Px in terms of disease progression highlight the importance of the epitope specificities of closely related class I molecules in the immune defense against HIV-1
Human Leukocyte Antigens and HIV Type 1 Viral Load in Early and Chronic Infection: Predominance of Evolving Relationships
BACKGROUND: During untreated, chronic HIV-1 infection, plasma viral load (VL) is a relatively stable quantitative trait that has clinical and epidemiological implications. Immunogenetic research has established various human genetic factors, especially human leukocyte antigen (HLA) variants, as independent determinants of VL set-point. METHODOLOGY/PRINCIPAL FINDINGS: To identify and clarify HLA alleles that are associated with either transient or durable immune control of HIV-1 infection, we evaluated the relationships of HLA class I and class II alleles with VL among 563 seroprevalent Zambians (SPs) who were seropositive at enrollment and 221 seroconverters (SCs) who became seropositive during quarterly follow-up visits. After statistical adjustments for non-genetic factors (sex and age), two unfavorable alleles (A*3601 and DRB1*0102) were independently associated with high VL in SPs (p<0.01) but not in SCs. In contrast, favorable HLA variants, mainly A*74, B*13, B*57 (or Cw*18), and one HLA-A and HLA-C combination (A*30+Cw*03), dominated in SCs; their independent associations with low VL were reflected in regression beta estimates that ranged from -0.47+/-0.23 to -0.92+/-0.32 log(10) in SCs (p<0.05). Except for Cw*18, all favorable variants had diminishing or vanishing association with VL in SPs (p<or=0.86). CONCLUSIONS/SIGNIFICANCE: Overall, each of the three HLA class I genes had at least one allele that might contribute to effective immune control, especially during the early course of HIV-1 infection. These observations can provide a useful framework for ongoing analyses of viral mutations induced by protective immune responses
Recombination rate and selection strength in HIV intra-patient evolution
The evolutionary dynamics of HIV during the chronic phase of infection is
driven by the host immune response and by selective pressures exerted through
drug treatment. To understand and model the evolution of HIV quantitatively,
the parameters governing genetic diversification and the strength of selection
need to be known. While mutation rates can be measured in single replication
cycles, the relevant effective recombination rate depends on the probability of
coinfection of a cell with more than one virus and can only be inferred from
population data. However, most population genetic estimators for recombination
rates assume absence of selection and are hence of limited applicability to
HIV, since positive and purifying selection are important in HIV evolution.
Here, we estimate the rate of recombination and the distribution of selection
coefficients from time-resolved sequence data tracking the evolution of HIV
within single patients. By examining temporal changes in the genetic
composition of the population, we estimate the effective recombination to be
r=1.4e-5 recombinations per site and generation. Furthermore, we provide
evidence that selection coefficients of at least 15% of the observed
non-synonymous polymorphisms exceed 0.8% per generation. These results provide
a basis for a more detailed understanding of the evolution of HIV. A
particularly interesting case is evolution in response to drug treatment, where
recombination can facilitate the rapid acquisition of multiple resistance
mutations. With the methods developed here, more precise and more detailed
studies will be possible, as soon as data with higher time resolution and
greater sample sizes is available.Comment: to appear in PLoS Computational Biolog
CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription
Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity
Evaluation and optimization of membrane feeding compared to direct feeding as an assay for infectivity
<p>Abstract</p> <p>Background</p> <p>Malaria parasite infectivity to mosquitoes has been measured in a variety of ways and setting, includind direct feeds of and/or membrane feeding blood collected from randomly selected or gametocytemic volunteers. <it>Anopheles gambiae s.l </it>is the main vector responsible of <it>Plasmodium falciparum </it>transmission in Bancoumana and represents about 90% of the laboratory findings, whereas <it>Plasmodium malariae </it>and <it>Plasmodium ovale </it>together represent only 10%.</p> <p>Materials and methods</p> <p>Between August 1996 and December 1998, direct and membrane feeding methods were compared for the infectivity of children and adolescent gametocyte carriers to anopheline mosquitoes in the village of Bancoumana in Mali. Gametocyte carriers were recruited twice a month through a screening of members of 30 families using Giemsa-stained thick blood smears. F1 generation mosquitoes issued from individual female wild mosquitoes from Bancoumana were reared in a controlled insectary conditions and fed 5% sugar solution in the laboratory in Bamako, until the feeding day when they are starved 12 hours before the feeding experiment. These F1 generation mosquitoes were divided in two groups, one group fed directly on gametocyte carriers and the other fed using membrane feeding method.</p> <p>Results</p> <p>Results from 372 <it>Plasmodium falciparum </it>gametocyte carriers showed that children aged 4–9 years were more infectious than adolescents (p = 0.039), especially during the rainy season. Data from 35 carriers showed that mosquitoes which were used for direct feeding were about 1.5 times more likely to feed (p < 0.001) and two times more likely to become infected, if they fed (p < 0.001), than were those which were used for membrane feeding. Overall, infectivity was about three-times higher for direct feeding than for membrane feeding (p < 0.001).</p> <p>Conclusion</p> <p>Although intensity of infectivity was lower for membrane feeding, it could be a surrogate to direct feeding for evaluating transmission-blocking activity of candidate malaria vaccines. An optimization of the method for future trials would involve using about three-times more mosquitoes than would be used for direct feeding.</p
Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703–positive individuals and their transmission recipients
HLA-B*57 is the class I allele most consistently associated with control of human immunodeficiency virus (HIV) replication, which may be linked to the specific HIV peptides that this allele presents to cytotoxic T lymphocytes (CTLs), and the resulting efficacy of these cellular immune responses. In two HIV C clade–infected populations in South Africa and Zambia, we sought to elucidate the role of HLA-B*5703 in HIV disease outcome. HLA-B*5703–restricted CTL responses select for escape mutations in three Gag p24 epitopes, in a predictable order. We show that the accumulation of these mutations sequentially reduces viral replicative capacity in vitro. Despite this, in vivo data demonstrate that there is ultimately an increase in viral load concomitant with evasion of all three HLA-B*5703–restricted CTL responses. In HLA-B*5703–mismatched recipients, the previously described early benefit of transmitted HLA-B*5703–associated escape mutations is abrogated by the increase in viral load coincident with reversion. Rapid disease progression is observed in HLA-matched recipients to whom mutated virus is transmitted. These data demonstrate that, although costly escape from CTL responses can progressively attenuate the virus, high viral loads develop in the absence of adequate, continued CTL responses. These data underline the need for a CTL vaccine against multiple conserved epitopes
Pregnant women & vaccines against emerging epidemic threats: Ethics guidance for preparedness, research, and response
Zika virus, influenza, and Ebola have called attention to the ways in which infectious disease outbreaks can severely – and at times uniquely – affect the health interests of pregnant women and their offspring. These examples also highlight the critical need to proactively consider pregnant women and their offspring in vaccine research and response efforts to combat emerging and re-emerging infectious diseases. Historically, pregnant women and their offspring have been largely excluded from research agendas and investment strategies for vaccines against epidemic threats, which in turn can lead to exclusion from future vaccine campaigns amidst outbreaks. This state of affairs is profoundly unjust to pregnant women and their offspring, and deeply problematic from the standpoint of public health. To ensure that the needs of pregnant women and their offspring are fairly addressed, new approaches to public health preparedness, vaccine research and development, and vaccine delivery are required. This Guidance offers 22 concrete recommendations that provide a roadmap for the ethically responsible, socially just, and respectful inclusion of the interests of pregnant women in the development and deployment of vaccines against emerging pathogens. The Guidance was developed by the Pregnancy Research Ethics for Vaccines, Epidemics, and New Technologies (PREVENT) Working Group – a multidisciplinary, international team of 17 experts specializing in bioethics, maternal immunization, maternal-fetal medicine, obstetrics, pediatrics, philosophy, public health, and vaccine research and policy – in consultation with a variety of external experts and stakeholders.Fil: Krubiner, Carleigh B.. University Johns Hopkins; Estados UnidosFil: Faden, Ruth R.. University Johns Hopkins; Estados UnidosFil: Karron, Ruth A.. University Johns Hopkins; Estados UnidosFil: Little, Margaret O.. University Of Georgetown; Estados UnidosFil: Lyerly, Anne D.. University of North Carolina; Estados UnidosFil: Abramson, Jon S.. University Wake Forest; Estados UnidosFil: Beigi, Richard H.. Magee-Womens Hospital of University of Pittsburgh Medical Center; Estados UnidosFil: Cravioto, Alejandro R.. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Durbin, Anna P.. University Johns Hopkins; Estados UnidosFil: Gellin, Bruce G.. Sabin Vaccine Institute; Estados UnidosFil: Gupta, Swati B.. IAVI; Estados UnidosFil: Kaslow, David C.. PATH; Estados UnidosFil: Kochhar, Sonali. Global Healthcare Consulting; IndiaFil: Luna, Florencia. Facultad Latinoamericana de Ciencias Sociales; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Saenz, Carla. Pan American Health Organization; Estados UnidosFil: Sheffield, Jeanne S.. University Johns Hopkins; Estados UnidosFil: Tindana, Paulina O.. Navrongo Health Research Centre; GhanaFil: The Prevent Working Group. No especifĂca
Disparate Associations of HLA Class I Markers with HIV-1 Acquisition and Control of Viremia in an African Population
BACKGROUND:Acquisition of human immunodeficiency virus type 1 (HIV-1) infection is mediated by a combination of characteristics of the infectious and the susceptible member of a transmission pair, including human behavioral and genetic factors, as well as viral fitness and tropism. Here we report on the impact of established and potential new HLA class I determinants of heterosexual HIV-1 acquisition in the HIV-1-exposed seronegative (HESN) partners of serodiscordant Zambian couples. METHODOLOGY/PRINCIPAL FINDINGS:We assessed the relationships of behavioral and clinically documented risk factors, index partner viral load, and host genetic markers to HIV-1 transmission among 568 cohabiting couples followed for at least nine months. We genotyped subjects for three classical HLA class I genes known to influence immune control of HIV-1 infection. From 1995 to December 2006, 240 HESNs seroconverted and 328 remained seronegative. In Cox proportional hazards models, HLA-A*68:02 and the B*42-C*17 haplotype in HESN partners were significantly and independently associated with faster HIV-1 acquisition (relative hazards = 1.57 and 1.55; p = 0.007 and 0.013, respectively) after controlling for other previously established contributing factors in the index partner (viral load and specific class I alleles), in the HESN partner (age, gender), or in the couple (behavioral and clinical risk score). Few if any previously implicated class I markers were associated here with the rate of acquiring infection. CONCLUSIONS/SIGNIFICANCE:A few HLA class I markers showed modest effects on acquisition of HIV-1 subtype C infection in HESN partners of discordant Zambian couples. However, the striking disparity between those few markers and the more numerous, different markers found to determine HIV-1 disease course makes it highly unlikely that, whatever the influence of class I variation on the rate of infection, the mechanism mediating that phenomenon is identical to that involved in disease control
- …