2,138 research outputs found

    Shapes and fissility of highly charged and rapidly rotating levitated liquid drops

    Get PDF
    We use diamagnetic levitation to investigate the shapes and the stability of free electrically charged and spinning liquid drops of volume ∼1 ml. In addition to binary fission and Taylor cone-jet fission modes observed at low and high charge density, respectively, we also observe an unusual mode which appears to be a hybrid of the two. Measurements of the angular momentum required to fission a charged drop show that nonrotating drops become unstable to fission at the amount of charge predicted by Lord Rayleigh. This result is in contrast to the observations of most previous experiments on fissioning charged drops, which typically exhibit fission well below Rayleigh’s limit

    The U.S. economy in 1987 and 1988

    Get PDF
    Business forecasting

    Copolymerization of ε-caprolactone and morpholine-2,5-dione derivatives

    Get PDF
    Novel biodegradable poly(ester-amide)s were prepared by ring-opening copolymerization of -caprolactone and 3- and/or 6-alkyl-substituted morpholine-2,5-dione derivatives. The copolymerizations were carried out in the bulk using stannous octoate as an initiator. Molecular weights of the copolymers ranged from 1,0 · 104 to 8,3 · 104 and decreased with increasing mole fractions of morpholine-2,5-dione derivatives in the feed. 13C NMR sequence analysis indicated that the copolymers had a random distribution of -oxycaproyl and depsipeptide units, which resulted from the occurrence of transesterification reactions during copolymerization. The results of the DSC measurements and 13C NMR sequence analysis showed a close relationship between the crystallinity and average length of ε-oxycaproyl blocks. Copolymers with a mole fraction of depsipeptide units smaller than 0,20 were semi-crystalline, whereas incorporation of larger amounts of depsipeptide units resulted in amorphous copolymers. The melting point depression as a function of the molar composition of the semi-crystalline copolymers was in good agreement with the melting point depression predicted by the Baur equation, which indicated the rejection of depsipeptide units from crystals consisting of ε-oxycaproyl units

    The U.S. economy in 1989: an uncertain outlook

    Get PDF
    The Federal Reserve's monetary policy in 1989 will likely focus on countering emerging inflationary pressures. As these pressures are contained, the good economic performance shown by the economy in recent years is likely to continue.Business forecasting ; Economic conditions - United States

    Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling

    Get PDF
    Local sensory information is often ambiguous forcing the brain to integrate spatiotemporally separated information for stable conscious perception. Lateral connections between clusters of similarly tuned neurons in the visual cortex are a potential neural substrate for the coupling of spatially separated visual information. Ecological optics suggests that perceptual coupling of visual information is particularly beneficial in occlusion situations. Here we present a novel neural network model and a series of human psychophysical experiments that can together explain the perceptual coupling of kinetic depth stimuli with activity-driven lateral information sharing in the far depth plane. Our most striking finding is the perceptual coupling of an ambiguous kinetic depth cylinder with a coaxially presented and disparity defined cylinder backside, while a similar frontside fails to evoke coupling. Altogether, our findings are consistent with the idea that clusters of similarly tuned far depth neurons share spatially separated motion information in order to resolve local perceptual ambiguities. The classification of far depth in the facilitation mechanism results from a combination of absolute and relative depth that suggests a functional role of these lateral connections in the perception of partially occluded objects

    Validation of soft multipin dry EEG electrodes

    Get PDF
    Current developments towards multipin, dry electrodes in electroencephalography (EEG) are promising for applications in non-laboratory environments. Dry electrodes do not require the application of conductive gel, which mostly confines the use of gel EEG systems to the laboratory environment. The aim of this study is to validate soft, multipin, dry EEG electrodes by comparing their performance to conventional gel EEG electrodes. Fifteen healthy volunteers performed three tasks, with a 32-channel gel EEG system and a 32-channel dry EEG system: the 40 Hz Auditory Steady-State Response (ASSR), the checkerboard paradigm, and an eyes open/closed task. Within-subject analyses were performed to compare the signal quality in the time, frequency, and spatial domains. The results showed strong similarities between the two systems in the time and frequency domains, with strong correlations of the visual (ρ = 0.89) and auditory evoked potential (ρ = 0.81), and moderate to strong correlations for the alpha band during eye closure (ρ = 0.81–0.86) and the 40 Hz-ASSR power (ρ = 0.66–0.72), respectively. However, delta and theta band power was significantly increased, and the signal-to-noise ratio was significantly decreased for the dry EEG system. Topographical distributions were comparable for both systems. Moreover, the application time of the dry EEG system was significantly shorter (8 min). It can be concluded that the soft, multipin dry EEG system can be used in brain activity research with similar accuracy as conventional gel electrodes

    Rotating Rayleigh-Taylor instability

    Get PDF
    The effect of rotation upon the classical Rayleigh-Taylor instability is considered. We consider a two-layer system with an axis of rotation that is perpendicular to the interface between the layers. In general we find that a wave mode’s growth rate may be reduced by rotation. We further show that in some cases, unstable axisymmetric wave modes may be stabilized by rotating the system above a critical rotation rate associated with the mode’s wavelength, the Atwood number and the flow’s aspect ratio
    corecore