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Vardi (1985) introduced an s - sample model for biased sampling, gave conditions which guarantee the 

existence and uniqueness of the nonparametric maximum likelihood estimator Gn of the common underly

ing distribution G, and discussed numerical methods for calculating the estimator. 

Here we examine the large sample behaviour of the NPMLE G,,, including results on uniform con

sistency of Gn. convergence of Vn(Gn-G) to a Gaussian process, and asymptotic efficiency of Gn as an 

estimator of G. The proofs are based upon recent results for empirical processes indexed by sets and func

tions, properties of irreducible M-matrices, and the homotopy invariance theorem. 

A final section discusses examples and applications to stratified sampling, 'choice-based' sampling in 

econometrics, and 'case-control' studies in biostatistics. 
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1. INTRODUCTION: BIASED SAMPLING MODELS AND VARDI'S NONPARAMETRIC MLE. 

We begin by describing the biased sampling model studied by Vardi (1985a, 1985b) and a useful iid 

version of the model. 
The s - sample model for biased sampling introduced by Vardi (1985a) is as follows: Let G be an 

unknown distribution on (X,B) , and let w i. · · · , ws be given non-negative weight functions. Sup

pose that Xii, · · · ,X;n, are iid X - valued rv's with distribution F; given by 

F;(A) = (1.1) 

for A E B and i = I, · · · ,s. In this model we let n _ n 1 + · · · + ns and typically 

assume that An; _ n; / n -7 A; > 0 as min(n;) -7 oo . 
A convenient iid - model for biased sampling can be defined in terms of the same weight functions 

wi. · · · , ws , and distribution G by assuming that (X1,I1), j = I, · · · ,n are iid with distribu

tion 

P(X E A, I i) "A;F;(A) 

for A E B and I, · · · ,s . In this version of the model the sample sizes n; 
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are random and we have An; = n; / n -">p A; as n ~ oo . 
In both cases the problem is to estimate G . Vardi (1985a) studied the nonparametric maximum 

likelihood estimate of G , gave conditions for its existence and uniqueness, and proposed an algo
rithm for calculating it. Vardi (1985b) also provided a heuristic outline of the large sample theory of 
his estimator. 

In this paper we give a thorough treatment of the asymptotic distribution theory of Vardi's estima
tor, including results about its efficiency using the methods developed in Begun, Hall, Huang, and 
Wellner (1983). Consistency is treated in section 2, lower bounds for estimation are discussed in sec
tion 3, and asymptotic normality is established in section 4. In the final section, section 5, we discuss 
examples, applications, and connections between biased sampling models and work in econometrics 
on 'choice - based' sampling by Cosslett (1981), and in biostatistics on 'case-control' studies by 
Breslow and Day ( 1980), Prentice and Pyke ( 1979), and others. 

Now we introduce Vardi's (1985a) nonparametric maximum likelihood estimator of G and some 
notation which will be used throughout the paper. 

Let F _ (Fi. · · · ,Fs)T denote the vector of distributions defined by (1.1), and, with 
An; - n;/n, i = l, ... ,s,set 

and (1.3) 

Note that Fn is random in the iid model (1.2). For any vector u E Rs , let u denote the s X s 
diagonal matrix with entries u; on the diagonal, and set 

w(u) - u- 1 w, r(u) - (AT w(u))- 1, rn(u) _ (Ar w(u))- 1 (1.4) 

where w = (w 1, • • • ,ws)T is the vector of biasing functions. We also set 

w 
and write 

-w w(W) = w- 1w, 

Now F and Fn are related to G by 

dF = (AT w)dG = r- 1 dG 

and 

r 

dFn = (Ar w)dG = r;; 1 dG 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

so that, letting x+ - {x E X: r(x)- 1 > 0} and x;; {x E X: rn(x)- 1 > 0}, we have 

G(A) = JA r(x)dF(x) for A E B n x+ (1.9) 

and 

for A E B n x,; . (l.10) 

It is clear from (1.9) that G can only be estimated on the set x+ . We therefore define 

G(A n X+) _ F(IA nx· r) 
G(X+) F(lx· r) 

G+(A) for A E B. (l.11) 

If support(G) c x+ , then F(r) = G(X+) = so that G+ = G, but in general 
G (X+) < I and G + =I= G . Also note that the distribution of the data depends on G through 
G + only, and hence the most we can hope to estimate is G + and w+ J ~ dG + =I= W . 
Therefore, to ease the notational burden, we henceforth drop the plus sign and write G for G + and 
W for w+ even when they are not, in fact, equal throughout the remainder of this section and sec
tions 2 ::-4_ The distinction will be made clearly, and the + sign introduced as needed, in the 



treatment of the examples in section 5. 
Our convention throughout will be to write 

j h dF - j x• h dF 

or, in a notation which we will use frequently, 

F(h) _ F(h Ix•). 

Note that the right side of (l.11) is a homogeneous function of degree 
above convention and (1.4) and (1.6) 

F(IAr(W)) F(lAr(cW)) 

F(r(W)) F(r(cW)) 
for any c > 0. 

Thus it follows in particular that, with c = 1 / w. , 
G(A) = F(IAr(V)) 

F(r( V)) 

where V - W / Ws . 
Now Tet IF n denote the empirical measure of all the X/s: 

in the iid model 

in the s - sample model. 

Let IF ni denote the empirical measure for 'sample i': 

n 

ni-I L 8~ 1(1, = iJ 
j=I 

in the iid model 

in the s - sample model 

(1.12) 

0 in the wi 's: using the 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

where Bx is the measure with mass I at x: 8x(A) = IA(x) for A E B, and define 

H('!_) _ j r('!_)~('!_)dF = F((r ~)('!_)) 

J rn('!_)~('!_)dFn 
J rn('!_)~('!_)dlFn 

F,,((rn w)( u)) 

1Fn((rn w)( u)) 

In view of (1.7) or (1.9) and (1.8) or (l.10) it follows that 

H( W) and Hn( W) = I. 

and, in fact, 

H(cW) = 1 foranyc > 0. 

In view of (1.11) and (l.18), estimators Gn and Wn of G and W 
the solution (provided it exists) of the equations 

IHln(Wn) = 1 

IFn(hrn(Wn)) 
Gn(h) = 1Fn(rn(Wn)) 

Wn Gn(w). 

for all h 

(l.17) 

( 1.18) 

( l.19) 

G ( w) may be defined as 

( 1.20) 
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Alternatively, in view of (l.14) and (l.19) we can first estimate V 
exists, of 

W / Ws as the solution, if it 

and then estimate G by 

U:Ah rn('V n)) 
Gn(h) -

f n(rn('V n)) 

i = 1, · · · ,s -1 

The latter approach is the one taken by Vardi ( l 985a, l 985b ). 

(1.21) 

(1.22) 

In our notation, Vardi's (1985a) condition for existence of a unique nonparametric maximum likeli
hood estimator (i.e. a solution of (1.20) or (1.21)) is: 

n 2; J, dfn(X) > 2; n; 
i E B {x: w,(x) >OJ i E B 

for every nonempty proper subset 
B of {l, ... ,s}. (1.23) 

Vardi (1985a) shows that (1.23) has several equivalent forms, one of which is in terms of a directed 
graph Mons vertices defined as follows: a directed edge connects vertex i to vertex i', i ~ i', if and 
only if J w; d f ni' > 0. Then we say that M is strongly connected if for any two vertices x and x' 
there exists a directed path from x to x' and a directed path from x' to x. Vardi (1985a) shows that 
(1.23) is equivalent to: 

the graph M is strongly connected . 

Note that M is strongly connected if and only if the matrix with elements fni'(w;) 
irreducible; see Berman and Plemmons (1979), pages 27 - 30. 

(1.24) 

J W; dfni' is 

THEOREM I.I. (VARDI). If (1.23) or equivalently (l.24) holds, then the equations (1.21) have a unique 
solution and Gn given in (l.22) is the nonparametric maximum likelihood estimate of G. Equivalently, 
if (1.23) or (1.24) holds, then the system of equations (1.20) has a unique solution Gn, Wn which is the 
nonparametric maximum likelihood estimate of G, W. Conversely, if (1.23) or (J.l4j fail, then the 
equations (1.20) do not have a unique solution Gn, Wn-

2. CONSISTENCY OF Gn . 
Our first task is to establish the consistency of the nonparametric maximum likelihood estimator Gn 
of G introduced in section l under both the iid and s - sample models. Suppose that 

G(wi") < oo for i = 1, · · · ,s. (2.1) 

Then it follows from the strong law of large numbers (and the assumption n; / n ~ A.; for 
i = I, · · · ,s in the s - sample case) that for any i,j = 1, · · · ,s 

I 
1Fnj(w;) ~a.s. Fj(w;) = W G(w; wj) as n ~ oo. (2.2) 

J 

Thus we can define a graph M* with s vertices and an edge from i to j, i ~ j, if and only if 

G(w; wj) > 0. (2.3) 

In terms of the graph M* , an asymptotic version of the condition (l.23) is: 

is a connected graph . (2.4) 

The main result of this section can now be stated as: 
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THEOREM 2.1. (CONSISTENCY OF Gn ). Suppose that (2.1) and (2.4) hold, and that '.JC is a collection of 

functions of the form '.JC= {he le: C E 8} where the envelope function he satisfies 

G(he) = F(rhe) < oo and 8 is a Vapnik - Chervonenkis class of subsets of X. Then 

sup{IGn(h) - G(h) I: h E '.JC} ~a.s. 0 as n ~ oo . (2.5) 

COROLLARY 2.1. If X = Rd and '.JC is the class of all indicator functions of lower left orthants, or of 

all rectangles, or of all balls, or the class of all half - spaces, then (2.1) and (2.4) imply that (2.5) holds. 

REMARK 2.1. Several variants of theorem 2.1 are possible, depending on which basic Glivenko - Can

telli theorem is used. For some other possible formulations, see e.g. Dudley (1985) theorems 6.1.5 and 

11.1.6 or Pollard ( 1984). 

REMARK 2.2. What can be said if (2.4) fails? If r ~ s is the number of components of the graph 

M*, let C i. · · · , Cr be a partition of the indices { 1, · · · ,s} corresponding to the r com

ponents, and define xj = {x E X: ~. c A; W;(X) > 0 for some i E cj } . (Thus when 
I E J 

r = 1, X1 = x+ .) Then we can estimate Gj = G(· lx) / G(lx) for each j : note that Vardi's 

estimator works asymptotically for each component of the graph separately, that M is reducible, 

rank(M) = s - r, and hence, after a relabeling of the samples, M is a block - diagonal matrix 

with blocks Mjj which are irreducible and rank(Mjj) = dim(Mjj) - 1. 

An important part of our argument, which we use repeatedly in the following sections, concerns the 

derivative matrix \J HT of the vector of functions H( u) defined in (l.17). By straightforward cal

culation (justified by Ifie monotone convergence theorem) 

{ H(!!_)~-I - F(r2 (!!_)~(!!_)~T(!!_))}~~-I (2.6) 

{~-I - F(r2 ~~T)}~~-I when u - cW so H(u) 1 . (2.7) 

- MA.u- 1 

PROPOSITION 2.1. If the graph M* is connected, then the matrix 

M _ >...- 1 - F(r2 wwT) 

defined in (2. 7) has rank s-1. In fact, every principal proper submatrix of M is nonsingular, and the 

same holds for (\J H)(u). In particular, if the ith row and column are deleted, a matrix of full rank (s-1) 

results. -

To prove the preceding assertions, it will be convenient to work with V n 
T -

defined by ( 1.21) and ~ - ( V 1 , • • • , Vs - 1 , I) = W / Ws . 

PROPOSITION 2.2. If the graph M* is connected, then the unique solution V n of (1.21) satisfies 

\In ~a.s. V - W /Ws 

where V is the unique solution of 

H;( V) = 1, 

as n ~ oo 

l, · · · ,s - I. 

(2.8) 

(2.9) 
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This proposition will be proved by means of the following lemmas. 

LEMMA2.l. (\JH)(!:!_)"!:!_ = Qforall u E R+s. 

PROOF. Since each H; is homogeneous of degree zero, H(c u) = H( u) for all c > 0. Hence 

0 = ..1_ H(c u) = (\J H)(c u)·u for all c > 0 (a) - ac- -
and in particular for c = l . D 

LEMMA 2.2. ( - (\J H)(u))iJ ~ 0 for i =I= j, and hence the upper left (s - l)X(s -1) submatrix of 
- (\J H) is in the col!eCtion z<s-l)X(s-I) of Berman and Plemmons (1979) page 132. 

PROOF. Note that F(r2(!:!_)w;(!:!_)w/!:!_) ;;;;. 0 in (2.6). • D 

PROOF OF PROPOSITION 2.1. By Berman and Plemmons (1979) exercise 6.4.14 page 155, and the facts 
that M E zsxs, ;\ >> O,and M;\ = 0, Mis a singular M-matrixwith'propertyc'.Since 
the graph M* is connected, M is also irreducible; see theorem 2.7, Berman and Plemmons (1979), 
page 30. Hence by theorem 6.4.16(4), Berman and Plemmons (1979), every principal proper submatrix 
of M is nonsingular. The same argument applies to (\J H)(u) starting from the observation that 
(\J H)(u)·u = 0. D -

LEMMA 2.3. If M* is connected (i.e. (2.4) holds), then every solution of (2.9) is an isolated solution. 

PROOF This follows from Proposition 2.1 and the implicit function theorem; see e.g. Apostol ( 1957) or 
Ortega and Rheinholdt (1970). D 

LEMMA 2.4. (V ARDI) If M* is connected, then with probability one for n ;;;;. some N"' there is a 
unique solution V n of the equations ( 1.21). 

PROOF. This follows from Vardi (1985a), theorems l and 2. D 

LEMMA 2.5. Let K be a compact set in R +s with all coordinates bounded away from 0. Then 

max sup llHln;( u) 
1.;;;.;;suEK -

as n~oo. (2.10) 

PROOF. Note that the functions 

• i = l, · · · ,s, u E K (a) 

are uniformly bounded (by max 1 .;;; ; .;;; s _ 1 ( l /A;)) . Since K is compact and since each h; is a 
monotone decreasing function of each coordinate of u, the supremum in (2.10) may easily be reduced 
to a maximum over a finite set of u 's in K and-then (2.10) follows by the strong law of large 
numbers. Alternatively, (2.10) followsrrom a Glivenko - Cantelli theorem for !Fn indexed by the col-
lection of functions in (a): see e.g. Pollard (1982), (1984), or Dudley (1985). D 

PROOF OF PROPOSITION 2.2. If (2.4) holds, then by lemma 2.3, v = w I Ws is an isolated solu
tion of (2.9). Let K be a small compact set containing V in its relative interior K 0 in R +(s - I) 

and no other solution. Since H(vi. · · · ,v5 _ 1, 1), is continuous, 

inf { max I H;(~) - 1 I} _ € > 0. 
v E oK I .;;; i .;;; s - I 

(a) 
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Furthermore, for 0 < l3 < c: , 

l3 
max sup I IHln;( v) - H;(_v) I < -

7 l.;;;.;;s-lvEK -
for n ;;;;., some N"' (b) 

by lemma 2.5. Hence by the homotopy invariance theorem (or 6.1.6 page 152) of Ortega and Rhein
holdt ( 1970), for n ;;;;., N"' 

deg(IHln, K 0
, _!) = deg(H, K 0

, _!) (c) 

where the right side is +l since the upper left (s - l)X(s -1) submatrix of V HT is nonsingular 
eve~here by proposition and since H has only one solution of (2.9) in K 0 

. Thus the unique solu
tion V of (1.21) guaranteed by lemma 2.4 is also in K 0 

• Since K can be chosen to be arbitrarily 
small,this implies (2.8). _ 

Now this same argument appJies to any other solution V of (2.9), since any other such solution is 
isolated by lemma 2.3. Hence ~ = ~ ; i.e. (2.9) has only one solution, namely V . D 

PROOF OF THEOREM 2.1. For a fixed function h we write 

llFn(hrn(\ln)) - F(hr)j 

,,.;; l1Fn(h(rn(Vn) r))I + l1Fn(hr) - F(hr)j 

--'.> a.s. 0 as n --'.> 00 

(a) 

for any fixed function h with F(hr) = G(h) < oo by the strong law of large numbers, and by 
continuity and boundedness of r( u) / r (as a function of x) together with proposition 2.2. Thus by 
Pollard's Glivenko - Cantelli theorem (see Dudley (1985), theorems 11.l.2 and 11.l.6), for X of the 
form hypothesized, 

sup. llF n(hrn(\111 ) - F(hr) I (b) 
hE:lt -

Thus, since 

-'>a.s. O· sup_ IF(hr)j + 0 = 0. 
h E :lt 

l1Fn(hrn(\ln)) - F(hr)I 
,,.;; 

1Fn(rn(\ln)) 

_ F(hr) I 
F(r) 

+ IF(hr)I 
F(r) 

(2.5) follows from (a) with h = 1 and (b). D 

l1Fn(r11(\/11)) - F(r)I 

IF11 (r,,(\/ 11 )) 

Before ending this section, we record some useful facts concerning generalized inverses of the matrix 
M which will be used repeatedly in sections 2 - 5. 

PROPOSITION 2.3. If the graph M* is connected, then the matrix M has a {1,2} - inverse M- . Thus 
M- satisfies both 

MM- M = M (2.11) 
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and 

(2.12) 

Any such {J,2} - inverse M- also satisfies: 

y = M ~ implies x = M- y + c ~ for some c (2.13) 

where /... is the unique eigenvector of M with 0 eigenvalue. If in addition, M- is the {J,2,3,4} or 
Moore -::Penrose generalized inverse of M, then 

MM- = 1 - oor 
where 0 - ~/ l~I · 

(2.14) 

PROOF. By proposition 2.2, deleting any row and column, in particular the last row and column, from 
M yields an (s - l)X(s -1) matrix M 11 of rank s _:.1 . Thus a {1,2} inverse M- of M is 

given by 

[
Mit

1 
OJ . 

0 0 ' 
(2.15) 

see e.g. Seber (1977) page 76 and also Berman and Plemmons (1979) page 117. 
Since M is symmetric, another way to get a {l ,2} - inverse M- satisfying (2.11) and (2.12) is to 

use the decomposition M = P D PT where the columns of P are the normalized eigenvectors of 
M and D is the diagonal matrix of the eigenvalues d 1 ~ d 2 ~ • • • ~ ds-I > ds = 0 of 
M. Then 

(2.16) 

where n- is the diagonal matrix with Dii = l /di for i = 1, · · · , s -1 and Ds-; = 0, is 
in fact the Moore - Penrose (or { 1,2,3,4} ) generalized inverse of M - ; see Berman and Plemmons 
(1979) page 117. 

Now for any { 1,2} - inverse M- (an inverse satisfying both (2.11) and (2.12) ), M - M is the 
projector on R(M-) along N(M); see Berman and Plemmons (1979) page 118. Thus if 
x = x 0 + c /... and y = M x, it follows that M-y = M- M x = x 0 = x - c /... and 
hence (i.13) hofcls. The proof of(2.14) proceeds by direct computation using M =-PD pT and 
(2.16). D 

3. A LOWER BOUND FOR ESTIMATION OF G. 
Our goal here will be to derive a convolution theorem for regular estimates of G . Our computations 
will follow the approac~ of Begun, Hall, Huang, and Wellner (1983). An alternative derivation could 
be based on the results of Millar ( 1985). 

We suppose that support(G) c support(/...r w) so that G = c+ and F(r) = l, that 
r - I = V w and r are bounded, that G has density g with respect to v, and write 

with 

f; = wig 

W; 
- W;g, 

W; = jwigdv = G(w;) = <wi,l>G 

s 

f ~ "'A;f; 
i =I 

(3.1) 

(3.2) 

(3.3) 
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It is easily verified that each f; is Hellinger differentiable with respect to g with derivative 

A; p = JJ1 2 <+. - f W; Pg 11 2 dP), i = 1, ... ,s (3.4) 
g 

so that 

AfA;P f;P _ Ji_ fa -1;2 d 
1/2 pf;g P, g g 

l, · · · ,s (3.5) 

and hence 
s 

up ~ "A;Af A;P 
i=I 

s s 

~ "A;w;P ~ A; w;gl/2 <w;gl/2, P>v 
i=I i=I 

(3.6) 

The operator U maps L 2(P) to L 2(P) (since r- 1 is bounded) and is precisely the operator AT A 
of BeS!Jn, Hall, Huang, and Wellner (1983) in the iid case. It is often convenient to work instead 
with U mapping L 2(G) to L 2(G) defined by 

Up _ g- 112 U(g 112 p), for p E L 2(G). 

Thus 

up (3.7) 
= 

and we have 

<w,rUP>G (/ - <w,rWT>GA)<w,f3>G 
- - - -

(A-I - <w,rW 1 >G)"A<w,f3>G - - = -
M"A<w,P>G (3.8) 

where 
- - T <w,rw >G. (3.9) 

= 
Thus, by (2.13), (3.8) can be inverted to yield 

A <w,P>G = M- <w,rUP>G - a A (3.10) - - -
where the constant a = a(/1) is still to be determined. Substitution of (3.10) into (3.7) yields 

T - -rUp - p - rw M- <w,rUP>G - a (3.11) 

which implies 
- -I -u p -T - -rP + rw M- <w,rP>G + a (3.12) 

vp + a 

where 
-T - -vp rP + rw M- <w,rP>G. (3.13) 
- -

- -I -
Now we want U p J_ 1 in L 2(G) ; therefore 

a = a(/1) = - < V{:J, 1 >G 
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and 
- -I -u p 

Thus it follows that 
-

K(h, h) 

-

vp 

vp 
<V{J,l>G 

G(V {J). 

<g112(h - G(h)), u-I g 11 2(h - G(h))>v 
- -I - -

<h - G(h), U (h - G(h))>G 
- - - -

<h - G(h), V(h - G(h)) - G(V(h - G(h)))>G 

<h - G(h), V(h - G(h))>G 

where V is giv~n in (3.13) and M is given in (3.9). 
We say that Gn is a regular estimator of G if, under Pn = Pg., 

Vn(Gn - Gn) ~ § independent of {J 

(3.14) 

(3.15) 

(3.16) 

whenever Vn(g!l 2 
- g 112

) ~ p in L 2(v). Then the above calculations in combination with 
theorem 4.1 of Begun, Hall, Huang, and Wellner (1983) yield: 

THEOREM 3.1. Suppose that M* is connected, that F(r) = I so that G+ = G, and that both 
r - 1 and r are bounded. Then the limit process § for any regular estimator of G in the biased sam

pling model (I.I) can be represented as 

§=:Z:+W (3.17) 

where W is independent of the mean 0 Gaussian process :Z: with covariance function given by ( 3.15). 

A local asymptotic minimax lower bound can also be stated on the basis of the preceeding calcula
tions, but we forego this here. 

4. ASYMPTOTIC NORMALITY OF THE NONPARAMETRIC MLE Gn. 
We now study the asymptotic behavior of the process 

Zn = Vn(Gn - G) (4.1) 

regarded as a process indexed by functions h E L 2 ( G). We do this in both the iid case and the s -
sample case simultaneously (getting the same result in each case). To accomplish this, we define 

x: - Vn(fn - Fn) (4.2) 

An; n;/n, i = I,··· ,sand 
s s 

Fn - ~ An;F; =I= ~ A;F; = F. (4.3) 
i=I i=I 

as in (1.3). Here the n;'s are random sample sizes in the iid sampling model (and hence the An/s are 
random too), and deterministic sample sizes in the s - sample model, and we have 

as n ~ oo in the iid model 

as n ~ oo in the s - sample model (4.4) 

by the weak law of large numbers in the first case, and by assumption in the second case. Centering 
by Fn rather than F amounts to conditioning on the An; 's in the iid case. In either case we can 
write 
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x: = :± ~ y;;;(rFni - F,-) · (4.5) 
i=I 

Then, if IJ' is a Donsker class for F (or if IJ' is a Donsker class for all Fi, i = 1, · · · ,s in the s -

sample case), for a special construction as in Dudley and Philipp (1983), 

11x: - x·11~ - J~T1x:(f) - x*(f)I ~P o as n ~ oo (4.6) 

where x• is (a sequence of) mean 0 Gaussian processes with covariance function 

* *- s - -
Cov(X (h),X (h)) = ~ A;{F;(hh) - F;(h)F;(h)} 

i=I 

F(hh) - F(hll\F(h) (4.7) 

(4.8) 

This follows in the iid case by a random sample size version of the clas~ical theorems which can easily 

be deduced from the results of Dudley and Philipp (1983), and in the s - sample case by straightfor

ward calculation, also using the Dudley - Philipp results or other central limit theorems for the empir

ical process in the one - sample case such as Pollard (1982) or Ossiander (1985). 

Note that in the iid case x: and x* are related to the more familiar empirical process 

Xn - Vn(rF n - F) and its limit X by 

Xn = x: + Vn(l\n l\)TF (4.9) 

and 

X = x* + 7L>.. F (4.9') 

where x: and Vn(An - A) ~d 71..>. ~ N.(O, A - AAT) (by the multivariate CLT for a multi

nomial random vector) are asymptotically independent bya straightforward covariance calculation. 

Thus 

- -
F(hh) - F(h)F(h). 

The first step in studying 71..n is to establish asymptotic normality of Vn(Wn 

Wn results from solving (l.20). 

W) where 

THEOREM 4.1. (CLT FOR Wn ). If M* is connected, and Wn is the solution of (l.20), then, for the 

same special construction as in (4.6), 

Vn(Wn - W) ~P K-X*(~) + 71..aW (4.10) 

= K- x· (nv) (4.11) 

+ [-x*(r / F(r)) + {(l - F(r))!T G(~T)}M-x*(~)] W / F(r) 

K-x*(nv) x*(r + ,.wT M-G(rHi)) w if F(r) = I (4.12) 

-T -
(1 + ~ M- G(~))W}r) 

where both 
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K - MA.W- 1 and (4.13) 

have rank s - I. Recall that M = A. - I 
--T 

F(r2 w w ), and that M- is a {1,2} - generalized 
inverse as defined in proposition 2.3. = 

PROOF OF THEOREM 4.1. Since 

D-tln(Wn) = Hn( W) 

D-tln( W) + V'D-tln(W:)(Wn - W) 

where w: lies on the line segment between W n and W, it follows that 

- V'D-tln(W:)Vn(Wn - W) = Vn(D-tln( W) - Hn( W)) - - - -
and hence, letting n ~ oo, and writing !_w = limn Vn(Wn W), 

x*(rW) = -VH(W)Zw MA.w- 1zw 

or, by (2.13) in proposition 2.3 

Zw WA- 1M-x*(rW) + wA.- 1ZaA 
- -
K-x*(rW) + Za W. 

(a) 

(b) 

(c) 

(d) 

This completes the proof of (4.10). We postpone identification of Za as given in (4.11) since this step 
requires the convergence of Zn which will be established in theorem 4.2. In proving theorem 4.2 we 
will use only ( 4.10), and not ( 4.11 ). D 

Now define a Gaussian process z* by 

z*(h) = x*(V(h - G(h))) 

where, for /3 with /3Vr E L 2(G), 

V/3 

V/3 of(3.13)if F(r) 

(4.14) 

(4.15) 

I . 

THEOREM 4.2. (CLT FOR Zn). Suppose that (2.1) and (2.4) hold (so the graph M* is connected), and 
that '.JC is a collection of functions containing the constant function 1 such that (4.6) holds for the class 
<J- {hr: h E '.JC}. We also assume that G(h;r) = F(h;r2

) < oo where he is an envelope 
function for x· I h I :.;;;; he for all h E :JC Then, 

llZn - Z
0

Jh. - hs~pKJZn(h) - z*(h)J ~P 0 as n ~ oo (4.16) 

where Z is the (sequence of) mean 0 Gaussian processes (4.14) with covariance function 

K*(h,h) 

-

Cov(Z
0

(h), Z
0

(h)) 
- - -

G((h - G(h))V(h - G(h))) 

G(r+(h - h)(h - h)) + G((h - h)rWT)M-G((h - h)rW) 

with r+ = r / F(r), and h _ G(h) 

G((h - G(h))V(h - G(h))) if F(r) = l . 

where V is given by (4.15). 

(4.17) 

(4.18) 
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There are many sufficient conditions which imply that ( 4.6) holds for ~ = { hr: h E '.JC } ; see e.g. 
Dudley and Philipp (1983), Pollard (1984), or Ossiander (1985). The important special case of 
'.JC = {le: C E e} where e is a Vapnik - Chervonenkis class of subsets of X, which follows as a 
consequence of Pollard's (1982) theorem, is singled out in the following corollary. 

COROLLARY 4.2. Suppose that X = Rd and '.JC is the collection of all indicator functions of lower left 
orthants, or of all rectangles, or of all balls, or the class of all half spaces. If G(r) = F(r2

) < oo 

and (2.1) and (2.4) hold, then Zn satisfies (4.16). 

PROOF OF THEOREM 4.2. Now for any fixed h with F(h 2r 2
) 

'11.n(h) = Yn(Gn(h) - G(h)) 

Vn{IFn(hrn(Wn) _ Fn(hrn(Wn)} 
1Fn(rn(Wn)) Fn(rn( Wn)) - -

+ 1Fn((h 

where w; is on the line segment between Wn and W 

since Vurn(u) = r~(u);\u- 1 w(u) 

by ( 4.6), ( 4.4), proposition 2.2, and theorem 4.1 

. (a) 

(b) 

(c) 
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+ {F(hr 2_wr) - F(hr)F(r2 wT)}M-x*(rW)} / F(r) 
F(r) - -

since X*(~) = M~ w- 1!_w implies 

A W- 1Zw = M-X*(rW) + ZaA, and 
-- - -
{F(hr 2 wT) F(hr))F(r2 wT)}A = F(hr) 

- F(r - -
0 

x*(v+ (h - G(h))) z*(h) 

-
where vp is defined in (4.15). 

It remains only to establish that the convergence in (c) holds uniformly in h E '.JC. By comparison 
of (b) and ( c) and by theorem 4.1, it clearly suffices to show 

and 

x*(hr - r F(hr»I ~P 0 
F(r) 

Now, since llW~ - Wll ~ llWn - WI! ~P 0 by proposition 2.2 and F(h;r2
) 

lows from a Guvenko .:C:antelli illeorem for f n as in the proof of theorem 2.2. 
To prove (d), note that the left side is bounded by 

• Fn(hrn) • Fn(hrn) 
hs~p](JXn(hrn - rn Fn(rn) ) - X (hrn - rn Fn(rn) )I 

F.n(hrn) • F(hr) 
--) - X (hr - r )I 

'n Fn(rn) F(r) 

I + II. 

Then, since 

where 

(d) 

(e) 

< oo, (e) fol-

(f) 

uniformly in h E '.JC (g) 

and 
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(h) 

~ 0 uniformly in h E '.JC, 

and both (g) and (h) hold with h 
that 

1, II ~P 0 by uniform continuity of x*. To handle /, note 

where 

A ~ * Tn * sup IXn(hr(- - 1))1 + sup JXn(hr) - X*(hr) I 
hE:l( r hE:l( 

• rn + sup IX (hr(l - -))I 
h E :K r 

rn • 
~ II- - 111 00 sup IXn(hr) I + llX~(· r) - X*(· r)ll 

r h E :1( 

+ II~ - llloo supjX*(hr)I 
r h E :]( 

~p 0 by (4.6). (i) 

Since 1 E '.JC, B ~P 0 by (h) and (i). Thus I ~P 0, and hence (d) holds, which completes the 
proof of ( 4.16). _ 

Now we establish the covariance formula (4.17). First suppose that G(h) = G(h) = 0. Now 
from ( 4.8) and ( 4.15) it follows that 

Cov(Z*(h), z*(h)) = G(r- 1 V(h)V+ (h)) - G(ii/V(h))A.G(wV(h)). U) 

But 

G(wV(h)) <w,rh>G/ F(r) + <w.riVT >GM-G(hriV) 

(I + < ~,~T >GM-]G(h~). (k) 

Now if M- is the Moore - Penrose generlized inverse of M, it follows from (2.14) of proposition 
2.3 that MM- = I - (J(JT where (J is the (only) normalized eigenvector of M with eigenvalue 
0. Since MA. = 0 it follows-that -

and hence 

G(wV(h)) = (~-IM- + ~~T /~r~)G(h~) 
= A_-IM-G(hriV) 

since A_TG(hrW) = G(hrr- 1) = G(h) = 0. Also, 

(1) 

(m) 
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G(r- 1 V(h)V(h)) G((-(
1 

) h + WT M- G(rW))V(h) 
Fr - -

G(hV(h)) + G(hr"7r)M-G(wV+(h)). 

Thus 

G(hV(h)). 

Now for arbitrary h, since z*(l) = 0, 

z*(h) = z*(h - G(h)) 

so from (o) it follows that 

x·(v(h G(h))) 

-
Cov (z*(h), z*(h)] <h - G(h), V(h - G(h))>G, 

and hence ( 4.17) holds. D 

PROOF OF (4.11) OF THEOREM 4.1: (IDENTIFICATION OF Za) From (l.20) we have Wn 
and since W = G(~) by definition, it follows that 

Vn(Wn - W) = Zn(w) 

where max1..;;;..;;sllw;rjj 00 ~ max1..;;;..;;s(JV;/P.;) < oo. Thus,ontheonehandbytheorem4.2 

Vn(Wn - W) ~P Z*<_~) 

{X*(~ - r1f0)) + [F(r2~~T) - ?0) F(r2~T)l M-x*(~)} / F(r) 

(n) 

(o) 

= {X*(F~r)(~ - W/F(r))) + (G((~ - W/F(r))~T)]M-x*(~)}/F(r) (a) 

while on the other hand, by ( 4.10) 

Vn(Wn - W) ~P W~-IM- X*(~) + ZaW. (b) 

Thus the expressions on the right sides in (a) and (b) must be equal, and, upon multiplying across by 
P.rw- 1 and using ~rw- 1 W = 1, this yields 

{X*(r(r-1 =-1 / F(r))) + G(r(r- 1 - 1 / F(r))~T)M-x*(~)} / F(r) 

= lTM- X*(,.W) + Za 

or, since x*(l) = 0, 

so that 

{ -X*(r / F(r))+ [~T 

Za [-x*(r / F(r)) + {~r - G(~r)}M-x*(~)] / F(r) - ~TM-x*(,.W) 

(-x*(r / F(r)) + {(l - F(r))~r - G(~r)}M-x*(~)J / F(r) 
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which proves (4.11). When F(r) = 1 (4.11) reduces to (4.12). D 

We close this section with some remarks on the estimation of the asymptotic variance of the process 
Vn(Gn - G). From the Glivenko Cantelli theorems similar to those used in section 2 one can 
derive conditions for the sample analogue of ( 4.17) (with G and A replaced throughout -- i.e. also 

in V, M, w and r -- by Gn and An) to converge in probabllity to (4.17) as n ~ oo . In fact 
this (co-) vanance estimator is also obtained by formal likelihood calculations (inversion of the 
(n - l)X(n -1) matrix of second derivatives of the loglikelihood) continuing the derivation of Gn 

itself as a maximum likelihood estimator in the model where G is discrete, with mass at the actual 
observations only. 

5. EXAMPLES AND APPLICATIONS. 

EXAMPLE 5.1. (Length biased sampling, Vardi (1982)). Let X = R+ = [O,oo) and suppose 

0 < µ = J x dG(x) < oo. Let w 1(x) = 1, so that the first sample is from G itself, and let 

w2(x) x, so that the second sample is from the 'length - biased' distribution 
x 

F 2(x) = µ- 1 j ydG(y). Then x+ = X, G+ = G, and (2.4) holds. Furthermore 
0 

W (l,µf, and letting A1 = A E (0, 1), A2 = 1 - A _ A, 

r(x) = (A + X~)- 1 • 

Thus we have 

M 

since MA 0, where 

Also define 

K(x) 

and note that 

µ 

[~/KA - Kl 
AK/X ' 

r 00 x 1 J, ---_--dG(x). 
o ILA+°Ax/µ 

(5.1) 

(5.2) 

I -
G(l[o.x1r) = ~(G(x) - AK(x)). (5.3) 

Then by (4.17) with K(s,t) - K(l[O,s]• 110.11), 

K(s,t) = G(r(l10.s1 - G(s))(l[o,11 - G(t)) 

A + G(r(l10.s1 - G(s)))XK G(r010.11 - G(t))) 

by using M- ~ [h/O~K ~] 
as the {1,2} - inverse of M ; recall proposition 2.3. 
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in agreement with equation (3.6) of Vardi (1982). 
Moreover G(nv) = (G(r),K)T = (1 - "'A/AK,Kl, and hence, using K

the same version of M- , 

{K- ~ - (1 + ~T M-G(r~)) w}r 

[~]' - ~,-1,[:] 
and hence the limit rv 7L w of theorem 4.1 is 

where, by ( 4.8), 

X*( ~_r) - N(O, >.2 ~2 { G(x
2
r) 

= N(O, µ2(1 _- K)) 
>.AK 

- G(xr(l, ~ ))AG(xr(I, .. ~·f)}) 
µ - µ 

by straightforward calculation, which agrees with (3.3) of Vardi (1982). 

(5.5) 

EXAMPLE 5.2. ( s = I; biasing with only one stratum). For a general sample space X suppose that 
~ . = I a~d t~a~ w 1 =. w satisfies b~th G(w) < oo and W _ 1 _ G(w_-~J < oo. Then con

dition (2.4) is tnv1ally satisfied, and, lettmg W - G(w), r = W /w = w , F(r) = G(X+) 
may be = I or < 1 depending on w and G. Since M = 0 and ,.W = I, theorem 4.1 yields 

-' wi v n(Wn - W) ~d - x*(r I F 2(r))W - N(0,--4 (W -1 w - 1)). (5.6) 
F(r) 

Furthermore, the process 7!.* of theorem 4.2 reduces to 

"11.*(h) x*(r(h G+(h))/ F(r)) (5.7) 

= x*(r(h G+(h))) when F(r) 

with covariance function 

K(h,h) G+(r(h - G+(h))(h - G+(h)))/ F(r) (5.8) 
- -

G(r(h - G(h))(h - G(h))) when F(r) = I 

W-1 Ww~~) - G(h) ~;1)} + {G(hh) - :~>(h)}} 
These formulas agree with the results of Vardi (l985a) section 7(ii) in the case F(r) = l. The 
further special case w(x) = x (which is also the special case A = 0 in example I) was con
sidered by Cox ( 1969). 

EXAMPLE 5.3. (Truncated sampling or restricted measurement). This is a further special case of exam
ple 2. For a general sample space X suppose that s = 1 and that wi(x) = lc(x) where 
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C E B, C =/:= X, and G(C) < 1. Then x+ = C, W 1 = G(C) < 1, 
r(x) = G(C)lc(x), and G+ = G / G(C) is simply the conditional distribution G(-IC). Thus 

G+(A) = G(A nC) = F(A) for A E BnC' 
G(C) 

and the estimator G;i of G+ is simply fn. Note that W 1 = G(C) is not identifiable in this 
situation. 

EXAMPLE 5.4. ('Choice - based' sampling in econometrics; 'case - control studies' in biostatistics). 
Suppose that X = (Y,Z) where Y takes values in { 1, · · · ,M} and Z ~ H with density h 
with respect to µ is a covariate vector with values in Z c some RP. The basic (unbiased or pros
pective) model G has density 

g(y,z) = po{Ylz)h(z) 

so that 

G({y} XA) = l po{Ylz)dH(z) 

for y = l, · · · ,M and A E B(RP) where po(y lz) _ Po(Y = ylZ = z) 
(finite - dimensional) model. A frequent choice is the logistic regression model 

exp(ay + f3Jz) 
po(ylz) = M 

~ exp(ay' + /3§-z) 
y'= I 

with () = (a,{3) E R(p + l)M. 

(5.9) 

(5.10) 

is a parametric 

(5.11) 

The biased (or retrospective) sampling model F is obtained from G via the weight functions 
wi(x) = wh) = lv,{Y) where Di C {I, · · · ,M} for i = l, · · · ,s. This again yields a 

semiparametric submodel, since only distributions G of the form (5.10) are considered. 
One case of particular interest is that of 'pure choice - based sampling' in the terminology of 

Cosslett ( 1981 ). In this sampling scheme, the strata Di are taken to be just Di = { i}, 
i = l, · · · ,s _ M. In this case the graph M* of section 2 is not connected: in fact 
G(wiwJ) = 0 for all i =I= j and hence there is no unique nonparametric MLE Gn of G for this 
sampling scheme. Manski and Lerman ( 1977) avoid this difficulty of pure choice - based sampling by 

assuming that the 'aggregate shares' G(y) _ G({y} X Z) = J p 8(y lz)dH(z), y = 1, · · · ,M 

are known. Note that for this biasing system we can view F as a biased distribution derived from 
H with new biasing (weight) functions w;(z ;8) _ p8(y I z), y = I, · · · ,M, depending on the 
unknown parameter 8. Then w; = G(y), typically the condition on M* for these w*'s will hold, 
and if () is known the methods of the preceding sections yield estimates of H together with the 
asymptotic behavior of the estimates. 

This same pure choice - based sampling design is also frequently used in 'case - control studies' in 
biostatistics where the y 's often denote different disease categories. In the biostatistics applications 
interest centers on odds ratios which can be estimated from purely choice - based sampling in spite of 
the fact that G itself cannot be estimated; see e.g. Prentice and Pyke (1979), who examine the case 
of (5.11), and Breslow and Day (1980). If the 'pure choice - based' design is 'enriched' by taking 
s = M+ 1, A.M +1 = 0, and choosing wM+ 1(x) = l{I ... .,M}(y), then (2.4) holds and the 
nonparametric MLE Gn of G exists (a.s. for n ;;;;;;. some N .,) and is unique. See example 5. 

For general D/s the biased distribution F has density 

Iv, (y )po(y I z )h (z) 
f(y,z,i) = A.i--M---------

J ~ lv,{Y')po{Y'lz')h(z')dµ(z') 
y'=I 

(5.12) 
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and the condition (2.4) for existence of a unique solution is precisely Cosslett's (1981) Assumption 10: 

{, ~ 8 D;} n {, ;;'ff D;} * 0 for every proper 
subset B of {l, ... ,s} ; (5.13) 

see Vardi (1985a) sections 2 and 8. 
For known 0 , efficient estimates of H and their asymptotic behavior via the preceding sections 

can be obtained as follows: The marginal distribution of (Z,J) is 

l~1 lD,(y')po(y'Jz)}h(z) 

f (z,i) A; (5.14) 

J l~1 1D, (y')po(y' I z')}h (z')dµ(z') , 

w;(z)h(z) 
A-------

1 J w; (z')dH(z') 

where the new biasing functions w;(z) = w;(z ;O) depend on 0. Thus if 0 is known, the methods 
of Vardi (1985a) and the preceding sections apply to yield efficient estimates of H, which can, in 
turn, be used to construct efficient estimates of 0. This method is implicit in Cosslett (1981) section 4, 
and will be discussed in more detail in Bickel, Klaassen, Ritov, and Wellner (1986). 

EXAMPLE 5.5. ('Enriched' stratified sampling). Let X be a general sample sample space and suppose 
that D 1, • • • ,Ds form a (measurable) partition of X: D; nDj = 0 for i =I= j and 
s-1 
U D; = X. Let w;(x) = lD (x) for i = l, · · · ,s -1 and suppose that ws(x) = I. Thus 

i=I I 

the stratified sample from D 1, • • • , Ds _ 1 is 'enriched' by sampling from all of X with sampling 
fraction As > O; this terminology is that of Cosslett (1981). 

For this sampling scheme (2.4) holds (assuming without loss that G(D;) > 0, 
i = l, · · · ,s -1), F(r) l, and we have 

W; = G(D;), i = 1, · · · ,s -1 
s-1 1 

r(x) = /~1 As + A;/ G(D;) 1D.(x) 

so that the upper left s - l X s - 1 sub matrix of 

-2 1 
F(rw;) = AsG(D;) + A; . 

Hence the upper left s - 1 X s - 1 submatrix of 

1 
M·· = -

II A; 

F(r2w w T) is diagonal with elements 

M is diagonal with elements 

A5 G(D;) 

A;(AsG(D;) + A;) ' 

for i = 1, · · · ,s -1, and a { 1,2} - inverse M- of M is given by the diagonal matrix with last 
row and column containing all zeros and having diagonal elements M;j 1; recall proposition 2.3 and 
(2.15). Thus, K- = WA- 1 M- is also diagonal with last row and column all zero and diagonal 
entries 

(5.15) 



for 1, · · · ,s -1. Similarly, 

-T -(1 + w M- G(rw)) Wr 

G(rW;) = G(D;) /a; , 

... 'As-I I As, o] . Therefore 

s-1 lD A· 
(1 + ~-·--' )rW 

J=I G(D;) As -

1 -I W -r r 
A -s 

_1 w 
A-s 
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which is constant in x, and hence the limiting random vector in theorem 4.1 becomes K- x*(rw), 

the last element of which is 0 by the form of K-, and where the first s -1 elements of X*(r w) 
have an (s - l)X(s -1) covariance matrix 

c a - (a, aG(D))A(a, aG(D)l (5.16) 
- - --- -

= ~ [~-1- = (/,~)~(/.~/] ~' 
where p = G(D) - (G(D 1), • • • ,G(Ds)l. Thus by theorem 4.1, and straightforward calculation 
using (Y.15) and ().16), it follows that 

Vn(Gn(D) - G(D)) ~d Ns-1(0, ~s (G(D) - G(D)G(D)T)). 

Note that this is just the covariance matrix for the usual (multinomial) estimate of G(D) from a 
random sample of size nAs from all of X. In other words, sampling within the strata 15;" does not 
help in estimating the strata probabilities G ( D). 

EXAMPLE 5.6. (Stratified or truncated regression). This interesting and rich family of semiparametric 
submodels of the general biased sampling model begin with ordinary linear regression with unknown 
error distribution G0 as the basic (unbiased) model: Suppose that X = (Y,Z) '.:::'. G where 
Y = orz + t: with t: '.:::'. G0 with density g0 with respect to Lebesgue measure and 

Z :::::: H independent of t: with density h with respect to µ. Thus G has density 

g(y,z) = go(y - ()Tz)h(z). 

The biased sampling model is typically determined by weight functions w;(x) _ w;(y) = ID,(y), 

i = 1, · · · ,s, where the D;'s are disjoint subintervals of R 1• The case of s = 1 and 
D 1 = ( - oo,y0 ], which is also a special case of example 3, has been considered by Bhattacharya, 
Chernoff, and Yang (1983). Jewell (1985) considers the case s = 2 and D 1 = (-oo,y0 ], 

D 2 = (y 0 , oo) in which condition (2.4) fails, so a unique completely nonparametric estimator of G 
does not exist in view of Vardi's theorem 1.1. Nevertheless the parameters 0, G0 , and H are 
identifiable in this model, and for known () the methods of Vardi (1985a) can be applied iteratively 
by first regarding G0 as known and absorbing it into the biasing functions and estimating H, and 
then by treating H as known and absorbing it into the biasing functions and estimating G0 , and so 
forth. This type of semiparametric submodel of the biased sampling model will be treated by Bickel, 
Klaassen, Ritov, and Wellner ( 1986). 
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